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Summary J

( 1.2 Eddington bias

Source number counts as a function of flux (logN-logS
curves), are a fundamental tool in the study of source
populations. Here we present a new, powerful
method using the full Poisson machinery allow-
ing us to model the logN-logS distribution of X-
ray sources in a self-consistent manner. Because
we properly account for all the statistical effects and sources
of bias, we can exploit the full range of the data. We use
a Bayesian approach, modeling the fluxes with functional
The photon
counts are modeled conditioned on the source fluxes, the

forms such as simple or broken power-laws.

background contamination, detector sensitivity and detec-
tion probability. The built-in flexibility of the algorithm
also allows simultaneous analysis of multiple datasets. We
demonstate the power of our algorithm by applying it to a
set of Chandra observations. We find that the sources de-
tected in the Chandra Deep Field (North) ObsID 2234 follow
a broken power law ditribution with indices -0.9 and -1.52..

[ Data J

Chandra Deep Field: ObsID 2232
The Data consist of:

Exposure Map: ObsID 2232

o the measured counts and coordinates of each detected source,
® background estimate over the entire detector,
o effective area, exposure time, and vignetting,,

o tables of detection probabilities m(S}, L;, B(L;)), for a source of in-

trinsic flux Sj, at location Lj, and a local background B(Lj;).

[ 1. Statistical Biases ]

[ 1.1 Lost sources (false negatives) j

Because of statistical fluctuations of observed source intensities, a

preferentially larger number of faint sources are lost below the detection

threshold resulting in an artificial turnover of the logN — logS.

Effect on LogN-LogS: Estimate

. For sources with intensities near the detection threshold, there is a

tendency for the average measured flux to be higher than the true flux

because statistical fluctuations below the detection threshold will be

censored out

Eddington Bias: This
simulation, which shows the
true vs. the predicted source
intensities, illustrates the bias
for two different thresholds.

The lower curve using a

Bias reduction of our algorithm.
The lower dots are sets of
expected counts (drawn at each
iteration in analyzing ObsID
2232) ploted against observed
counts. The grey, upper dots,

Lost Sources. We show the
probability of not detecting a
source in Chandra ObsID 2232
as a function of log(Flux); the

fainter the source the more

likely it will remain undetected.

\_

missed sources, part of the
logN-logS solution, accounting
for detection probabilities.
Here, lower curve reflects only
observed sources; upper
includes the missing ones.

show the bias in absence of the
BENS correction.

threshold of 5, and the upper
one a threshold of 10.

( 1.3 Faint source fluctuations ]

When there are larger numbers of faint sources than bright sources, then
statistical fluctuations result in a larger number of the fainter sources
deflected into higher flux regimes, causing steepening of the inferred

slope.

Part of the bias in this
logN-logS of ObsID 2232

observed data, is attributable to

Ploted in red are the fluxes of
the observed sources at the first
iteration of our algorithm, and
the curvature we see in higher in black is the last iteration
fluxes. Note that these fluxes including missed sources. Note
the red line above the black at

high fluxes.

are observed w/ probab. 1 and
but overestimated.

[ 2. Method ]

o Generate a simulated sample of source intensities over the observed
field of view from an adopted model of the logN (> S) distribution.

e Account for observational biases by folding the source numbers
through the detection probabilities.

o The simulated source intensities, locations, and the observed back-
ground at these locations are used to determine the numbers and

distributions of missed sources.

e The model parameters are updated by comparing the simulated

2. Normalization:

<

The total number of objects N consists of the number of detected objects
Ngps and undetected objects Ny,s, and is assumed to follow a Poisson
distribution,
N|§ ~ Po(6) &§>0, (3)
Nimis ~ Po([1 —11}), O
where §, the Poisson parameter, is assumed to follow a noninformative

Gamma distribution and II is the marginal probability of observing a

source,

— / (S0, 6) / / (l,w(sj,L],B(L;)))P(LﬂdLde(Lj)dz).

2.2 Procedure J

With starting values, ag, B0, 0, and fixed break point, S*, we

1. Calculate the probability that a source is not detected (1 — II) as
described in (5)

2. Sample N™* conditional on N, and I,
a=b=0]
(6)

where @, b are the parameters of the uninformative gamma prior

N™| N g, b, 7 ~ NegBinom (N“bs +a, lth W)
-m

w

Account for background by modeling Y** ~ Po(A(S;) + AP), and
sampling the source count

AS)) )
A/ V— 7
sy a)) O

where A(S;) the expected source count for a source with flux S;, and

YTy, S;, Bj ~ Binom (Yf"i

A(B;), the expected background count adjusted for effective area.

We use a counts-to-energy conversion factor of 1.168 * 105 ph/erg,
0.1 — 10 keV based on a power-law spectrum with I' = 1.7 and
Npg = 180cm™2.

~

Sample the fluxes S; for observed (a) and unobserved (b) sources
(a)i=1,..., N from p(S;|M; = 0,Y7"e, L, Bj, Ej,a, 8,7, N)
(b)i=1,..., N™, from p(S;|M; = 1, Lj, Bj, Ej, a0, 8,7, N)

Sample a, 3,7|S1, ..., Sy

ot

(a) Fit a log-linear model to obtain maximum likelihood estimates
for (e, B,7)-

(b) Use the MLE obtained and the unscaled covariance matrix to be
the parameters of a ¢4 distribution and sample from the posterior

of (e, B,7).
. Repeat steps 1. - 4. to simulate the posterior distributions. This

=

is accomplished using MCMC and data augmentation algorithms.
Results are based on the cumulative draws from three Markov chains,
of size 100 each, after discarding the first 50 draws, for a total of 150
draws. Posterior inference is based on these 150 simulated values.

[ 3. Results ]

dataset modified as above, with the observed sources.
( 2.1 A Model for the logN-logS j
1. Slope:

The cummulative distribution of S, F(> S), is modeled using a Power
law model

F(> 8) = o x 5771, S > Spminy M
or in some cases a Broken Power law

apS~Pu if §>8
F(>5)= 1% [ o

oSS if S < S < S,

Here, the break point S, is fixed and the minimum flux, Sy, is deter-
mined by the faintest source.

ObsID Model Soft (0.3-2 keV) Broad (0.3-8 keV)
YMLE | BBENS YBENS YMLE BBENS|7YBENS

-1.26 | -1.24 -1.24 -1.23
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Table 2: Posterior Means obtained for BENS compared to Maximum
Likelihood Estimates according to Crawford et.al (1970), for the slope
parameters of the logN-logS. The MLE value is for the slope to the right
of the brake point. For the Broken Power law (BPL) 3 is the slope to

the left of the brake point and 7 to the right. /




