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Motivation
● Anticipated explosion in astronomical data 

with expected commissioning of the Large 
Synoptic Survey Telescope (LSST).

● Requirement of an early warning system to 
predict future events of interest.

● Increases chances of observing rare events 
and improving the allocation of the resources 
in astronomy.

http://ast.noao.edu/facilities/future/lsst



Problem Statement
● Time series datasets in astronomy are 

irregular in nature.
● Irregular time series are also found in 

transactional data and climatology.
● Conversion to regular time series; applying 

predictive models like ARIMA, Kalman filters 
and State Space Analysis.

● Model time series as non-linear models and 
solve the prediction problem in the 
irregular time domain.

Example of an Irregular and noisy time series.
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Recurrent Neural Networks
● Neural network architecture with recurrent edges spanning time steps.
● Suffers from vanishing gradient problem.
● Limited ability to learn long term dependencies.

Recurrent network unrolled over timeSingle recurrent network unit
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Echo State Networks

Figure 1: Example in ESN



Input Features
Data is standardized initially and processed. To generate the prediction at 
time tj to generate the following inputs:

● Magnitude at tj-1
● Time Difference  tj - tj-1
● Velocity at tj-1
● Acceleration at tj-1



Data
● Synthetic datasets - Implemented in TimeSynth

○ Regular time series
○ Irregular time series

■ Time stamps generated as a mixture of regular time stamps with gaussian 
perturbations

■ Time stamps generated from a uniform distribution

● Astronomy Datasets
○ HiTS - High Cadence Transient Survey
○ MACHO - Massive Astrophysical Compact Halo Objects Survey
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Correlations in Residuals
LSTM with input features on an 
irregular time series with 1000 
samples, f = 0.05Hz and added 
noise of 0.1 standard deviation
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Autocorrelation for Regular Time Series
Autocorrelation is a measure of non-randomness in data and identify an 
appropriate time series model if data is not random. 

Autocorrelation for lag k,



● 1st lag autocorrelation ⍴(1) of the residuals is 
computed

● Autocorrelation of the residuals is included as a 
part of the loss function

● Modified loss function

       where λ is the regularization parameter 

Experiments on Regular Time Series

Network Architecture for 
Regular time series



Experiments on Regular time Series
Without regularization

Results and autocorrelation plots for a gaussian 
process with SE kernel(σ = 0.5, L= 4) and added 
noise of standard deviation 0.1

Regularization parameter λ = 0



Results and autocorrelation plots for a gaussian 
process with SE kernel(σ = 0.5, L= 4) and added 
noise of standard deviation 0.1

Regularization parameter λ = 1

Experiments on Regular time Series
With regularization
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Autocorrelation for Irregular Time Series
Gaussian Perturbations

Distribution of the ith time stamp

Where r is the resolution 
and σp is the gaussian standard deviation.

Time difference distribution

Where 

Gaussian Perturbation 
Timestamp Sampling



Autocorrelation for Irregular Time Series
Gaussian Perturbations

Continuous time autoregressive equation for Irregular time series residuals

Where                                and Φ1 + Δtn is equivalent to ⍴(1).

For small values of σp



Autocorrelation for Irregular Time Series
Uniform Time Sampling

Samples [U1, U2,...,Un] are drawn from an uniform distribution U[0,T] and 
ordered into [U(1), U(2), …, U(n)] where U(k) is the kth order statistic.

Where n is the number of samples and 
β stands for Beta Distribution.



Autocorrelation for Irregular Time Series
Estimating the autocorrelation from data

Continuous Autoregressive equation

Log-Likelihood

Log-Likelihood is minimized by SGD until the exact parameter of Φ and σ are 
estimated. Heuristics used alongside of Log Likelihood for improved stability.



Network Architecture

Network Architecture for 
Irregular time series
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Multiple Error Realizations
Error budget is available for every 
measurement in astronomical light curves.

Using the error data, new realizations for 
the data can be generated for training.

Results indicate that using multiple 
realizations of the data helps the model 
become noise invariant.
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Results
Synthetic Time Series - Gaussian Perturbations
Dataset with 1000 samples, Sinusoidal function f = 0.05Hz, T=300s, noise=0.1, σp = 0.2

     Regularizer λ = 0       Regularizer λ = 50



Results
Long Period Variables(with multiple realizations training)[LC-1-3319]

Regularizer λ = 0                                                          Regularizer λ = 10



Results
Long Period Variables
Table comparing different training methods for LC-1-3319

Metric λ = 0 λ = 1 λ = 10 λ = 0(with MR) ARIMA(5,1,0)*

Training RMSE 0.115 0.119 0.118 0.123 0.277

Validation RMSE 0.179 0.154 0.156 0.160 0.296

Testing RMSE 0.227 0.197 0.212 0.216 0.301

Training R2 0.815 0.842 0.838 0.830 0.251

Validation R2 0.819 0.870 0.865 0.858 0.223

Testing R2 0.646 0.728 0.709 0.679 0.198

Autocorrelation 0.311 0.080 0.072 0.121 0.064

Residual Noise 0.364 0.332 0.338 0.350 -
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Echo State Networks

Figure 1: Example in ESN



Echo State Networks
● Recurrent Neural Net

● Reservoir (= state and transition weights)
○ Acts as nonlinear transformation and memory

● Randomly initialized adjacency matrix (many nodes)

● No backpropagation → No weight updates
○ Faster training

● Learn only the out-weights (called readouts)
○ E.g. through Ridge Regression



Echo State Networks 
● Equations:

○ Generate state matrix X iteratively:

○ Train readout weights Wout from state matrix X:

● Reservoir topology can be chosen
○ ‘Vanilla’ ESN: random weight matrix W
○ Simple Cyclic Reservoir (SCR): 

■ Weights W arranged cyclic
○ Cyclic Reservoir with Jumps (CRJ): 

■ Like SCR, but with additional node to node connections



Hyperparameter Optimization
● Tuning essential for predictive 

performance

● How to choose them wisely?
○ Grid search is expensive
○ Random search inefficient 

(especially for ‘vanilla’ ESN)
○ Not all gradients defined, so

Gradient descent is unfeasible

● Solution: Bayesian Optimization

➔ Hyperparameters in SCR (4):
◆ Number of nodes
◆ Input weight
◆ Cyclic weight
◆ Regularization parameter

➔ Hyperparameters in ‘vanilla’ ESN (7):
◆ Number of nodes
◆ Connectivity of nodes
◆ Input scaling
◆ Feedback scaling
◆ Spectral radius of Reservoir
◆ Leaking rate
◆ Regularization parameter



Bayesian Optimization
● Global optimization technique

○ Treats error as (unknown) function of 
hyperparameters

○ Gaussian Process as prior over 
unknown function

○ Kernel defines assumed local 
covariance (e.g. Matérn 5/2)

○ Lengthscale per dimension set by MAP

● Iteratively:
○ Sample next set of hyperparameters in 

area with most merit (utility) 
(e.g. Expected Improvement)

● Sample until convergence (or stop early)

Figure 3: Example in 1 dimension



Bayesian Optimization

Figure 3: Example in 1 dimension



Performance: BO vs. Grid Search
● Benchmark series: NARMA 10-th order system

● BO performs better
○ Sample efficiency:

Lower error on  <1000 evaluations
○ Discrete grid vs. continuous BO

● Some overhead in modeling GP
○ Less relevant when optimizing for 

a collection of time series

● Eventually, performance converges
with grid search Figure 4: Performance of Grid search vs. BO



Application to Prediction
● Benchmark series: NARMA 10th-order system
● 2x improvement in NMSE

Figure 6: Step ahead prediction for BO-optimized 
Reservoir (256 function evaluations, NMSE = 0.031)

Figure 5: Step ahead prediction for grid-optimized
reservoir (256 function evaluations, NMSE = 0.061)



Application to Clustering
● Fuzzy clustering application to time series

○ Every cluster has its own model (ESN) with distinct hyperparameters

● Iteratively, until convergence:
○ Compute prediction NMSE for every series per cluster
○ Assign cluster membership inversely proportional to NMSE
○ Re-compute model and hyperparameters per cluster using Bayesian Optimization

● Outcomes:
○ Series clustered by similar dynamics, into k distinct clusters
○ k Models with hyperparameters that represent cluster well and can be used for prediction 

of individual series in that cluster



Additional Work
● Closed form solution to the CAR equation
● Complete the prediction model for Echo State Network
● Extend to classification for the LSTM and ESN



Conclusion
● Implemented LSTM with forget gates for irregular time series applications 

in TensorFlow ( TimeFlow).
● Time series synthesizer for regular and irregular time series (TimeSynth).
● Estimating autocorrelation for irregularly spaced residuals in data.
● Modified LSTM loss function for reducing autocorrelations of the residuals 

from the predictions.
● Bayesian optimization of hyper parameters for faster prediction for ESN

 

https://github.com/abhishekmalali/TimeFlow


THANK YOU


