
Workshop on Semiparametric Methodology, University of of Florida, Jan. 2009

Incorporating Systematic Uncertainties into Spectral Fitting
H.Lee∗, V.Kashyap, J.Drake, A.Connors, R.Izem, T.Park, P.Ratzlaff, A.Siemiginowska, D.van Dyk, A.Zezas

H. Lee∗
Harvard-Smithsonian
Center for Astrophysics
hlee@cfa.harvard.edu

Introduction
X-ray spectral fitting is a process of solving the inverse problem (eq.1) to

infer θ, the parameter(s) of a source model S. The observed Poisson photon

counts O(Ei) are the main source of the uncertainty in θ estimates, so called

statistical error, whereas the systematic uncertainties in A (effective area)

and R (response matrix) have been ignored in spectral fitting. This igno-

rance generally underestimates the error bars of θ. This presentation focuses

on handling the A uncertainty in the spectral fitting process and illustrates

an efficient way to obtain calibration uncertainty incorporated error bars.

O(Ei) =

∫
S(E; θ)R(Ei; E)A(E)dE (1)

Effective Area (arf)
The plot below shows the coverage of a sample of 1000 ACIS-S arfs gen-

erated by Drake et al. (2006) and the default arf (ao) is in a black line.
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In order to incorporate the arf uncertainty into spectral fitting that affects

error calibration results, we propose Bayesian hierarchical modeling for spec-

tral fitting by devising the MCMC algorithms by van Dyk et al. (2001).

Summarizing the black box of arfs (A)
Principal Component Analysis (PCA) reduces dimensionality and summa-

rizes the arf set A with a small number of principal components (PCs),

ready to be utilized into spectral fitting instead of the entire 1000 arf sample

by calibration scientists. Let aj={1,...,M} ∈ A be given arfs by calibration

scientists on which we perform PCA.

Scree plot: 8 PCs explain

96% of total variation; 12

PCs explain 99%. We will

use the first 8 PCs (vn) and

8 coefficients (rn) to simu-

late arfs. Then, an arf a(j∗)
is generated via:
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Contribution

a(j∗) = a∗o + δa +

8∑
n=1

enrnvn, en∼N(0, 1) (2)

where a∗o is the supplied default arf, ao is the default arf, ā the mean of

ajs, and δa = ā − ao. The figure below shows the coverage of simulated

1000 arfs in red lines. The 8 PCs are sufficient to match the arf uncertainty

represented by gray lines.
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Marginalizing over arfs

p(θ|y) =
∫
A p(θ|y, a)p(a)da = 1

M

∑M
j=1 p(θ|y, aj)

How to marginalize over arfs?
Drake et al. (2006) proposed a strategy [B.0] using standard packages (e.g.,

XSPEC). We propose three algorithms [B.1-B.3] with BLoCXS (van Dyk et

al., 2001). [B.0] tends to be tedious and time consuming depending on the

size of the arf library, whose Bayesian counterpart is [B.1]. To speed up

[B.1], we introduce [B.2] by selecting arfs randomly from the arf library. To

improve computational efficiency, we introduce [B.3]. Given the observed

spectrum, [B.0-B.3] work as follows:

[B.0] Fit with XSPEC

Require: M arfs and spectral fitting engines;

for j = 1, ...,M do
Set a new arf aj and fit the spectrum yielding a best fit θ̂j.

end for
Compute mean and variance of {θ̂j}j=1,...,M .

Repeat fitting procedures as many times as the size of the arf library instead

of the supplied default arf. Very tedious!!!

[B.1] Fit with Gibbs sampler

Require: M arfs and Bayesian spectral fitting engines;

Set initial values including priors

for j = 1, ...,M do
repeat

Augment data yk|j given θk−1|j and aj

Draw θk|j from p(θ|yk|j, aj)

until the chain {θk|j} is stable, k = 1, ..., nj.

Drop nb draws of a burn-in period.

end for
Compute mean and variance of {θk|j}j=1,...,M .

Extra-tedious! The individual gibbs sequence {θk|j} offers a statistical error

that varies depending on an arf. See the plot at the lower right.

[B.2] Fit with randomized arfs

Require: M arfs and Bayesian spectral fitting engines;

Set initial values including priors

repeat
Choose a(j) randomly among M arfs.

Augment data yk(j) given θk−1(j−1) and a(j)
Draw θk(j) from p(θ|yk(j), a(j))

until the chain {θk(j)} is stable, k = 1, ..., n.

Drop nb draws of a burn-in period.

Compute mean/variance or mode/HPD from {θk(j)}.

Randomizing arfs saves the for loop in [B.1].

[B.3] Fit with PC simulated arfs

Require: PCs (vn), coefficients (rn), and spectral fitting engines;

Set initial values including priors

repeat
Simulate a(j∗) based on PCs. (see eq.(2).)

Augment data yk(j∗) given θk−1(j∗−1) and a(j∗)
Draw θk(j∗) from p(θ|yk(j∗), a(j∗))

until the chain {θk(j∗)} is stable, k = 1, ..., n.

Drop nb draws of a burn-in period.

Compute mean/variance or mode/HPD from {θk(j∗)}.

We distinguish (j∗), PC simulation from (j), randomization.

Comparison across algorithms
Results from these algorithms work very similarly as shown below but [B.3]

is most efficient. One histogram of best fits [B.0] and three posterior density

profiles [B.1-B.3] from fitting an absorbed power-law spectrum of photon

index α = 2, column density NH = 1023cm−2, and total counts ∼ 105

are shown. The black bar indicates a best fit±σ̂ only with the default arf.

The widths of posterior densities represent errors including calibration un-

certainty.
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Another absorbed power-law spectrum (α = 1, NH = 1021cm−2, ∼ 105 cnts).

αα

0.85 0.95 1.05 1.15

B.0
B.1
B.2
B.3

NH

0.06 0.08 0.10 0.12 0.14

B.0
B.1
B.2
B.3

How many arfs?
PCs and coefficients depend on the arf library provided by calibration sci-

entists but our results from PCA indicate that a relatively small number of

arfs is sufficient to incorporate calibration uncertainty instead of thousands.

Law of Total Variance (LTV)
LTV explains the complexity of the error decomposition. A best fit depends

on arfs and its uncertainty has two components, statistical error and cali-

bration error which are not independent. LTV indicates that the calibration

error is dominant with high count data where the statistical error becomes

minuscule. This law also explains that [B.3] of 8 PCs (96% calibration error)

tends to result in slightly narrower profiles than other algorithms.

V [θ] = V [E[θ|a]] + E[V [θ|a]]

Behaviors of calibration and statistical errors
Depending on the model used, these two errors may not be separable. In

the plot below, two groups of 15 similar arfs are colored and the histograms

of gibbs sequences are colored according to the arf colors (default arf in

black). The shifting patterns of posteriors do not match between these two

spectra. This figure clearly shows that best fit values change with arfs and

that calibration uncertainty must be incorporated into spectral fitting.

an absorbed

power-law

spectrum
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α = 2,

NH =

1023cm−2,

∼ 105 counts
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Asymptotics of calibration error
In the figure below, the horizontal solid line represents the average uncer-

tainty derived from [B.0] and the dashed lines represent the range in this

uncertainty obtained from 20 simulations (α = 2, NH = 1023cm−2, ∼ 105

counts). Also shown are the results obtained from combining posterior pdfs

by using different numbers of arfs. Dots represent the mean uncertainty and

vertical bars denote errors on the means; in other words, N arfs from 1000

are randomly chosen to get the uncertainty of 1
N

∑
(j) p(θ|y, a(j)) for 200

times, and the means and rms errors of these uncertainties are the dots and

bars. This figure shows that after N≈25, the estimated uncertainty is stabi-

lized and therefore, ∼25 fits with different arfs are sufficient to account for

calibration uncertainty provided that the full posterior pdf on the parameters

is obtained.
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Analyzing Quasar Spectra
Sixteen radio loud quasar spectra from Chandra Data Archive (CDA) are

analyzed based on the PowerLaw*abs model. Both panels display the

error characteristics of estimated power law index α. Calibration error

with/without the arf uncertainty is denoted by σtot/σstat. Three or 4 digit

numbers indicate ObsID in CDA. The left panel shows non zero limits in er-

rors due to calibration uncertainty. The right panel displays that systematic

errors become more significant in high count spectra than low count ones.

Summary
We have developed a fast, robust, and general method to incorporate effec-

tive area calibration uncertainties in model fitting of low-resolution spectra.

Because such uncertainties are ignored during spectral fits, the error bars

derived for model parameters are generally underestimated. Incorporating

them directly into spectral analysis with existing analysis packages is not

possible without extensive case-specific simulations, but it is possible to do

so in a generalized manner in a Markov chain Monte Carlo framework. We

describe our implementation of this method here, in the context of recently

codified Chandra effective area uncertainties. We develop our method and

apply it to both simulated as well as actual Chandra ACIS-S data. We

estimate the posterior probability densities of absorbed power-law model pa-

rameters that include the effects of such uncertainties. Overall, a single run

of the Bayesian spectral fitting algorithm incorporates calibration uncertainty

effectively.
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