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Abstract.
We develop a powerful new method to reconstruct stellar Differential Emission Measures

(DEMs), whose Bayesian framework allows us to incorporate atomic and calibration errors as prior
information. For instance, known errors in the line locations, as well as missing lines with only
minimal information, can be included directly during fitting. Highly correlated systematic errors in
the ion balance may be included as well, as a natural sequenceduring Monte Carlo sampling. Our
method uses the statistical framework of data augmentation, where we treat photon counts in each
level of the hierarchical structure as missing data. We demonstrate our method by fitting a selected
subset of emission lines and continuum in Chandra and EUVE data of Capella to estimate the DEM
that best describes the data, and simultaneously determinethe element abundances. The Markov
Chain Monte Carlo based method also naturally produces error estimates on the fit parameters.1
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INTRODUCTION

The differential emission measures (DEMs) is the distribution of the amount of mate-
rial in coronae as a function of temperature. DEM summarizesthe structure of coronae
of stars and provides a powerful tool for understanding the energetics in stellar atmo-
spheres. Hence, it is an important determinant of its physical structure and evolutionary
state. Given the emissivities and the observed photon counts of X-ray energies, we aim
to reconstruct the marginal distribution of the temperature of the corona.

SPECTRAL MODEL

We model the intensity of theideal photon counts arriving at energy bini without
instrumental contamination,Yi as independent Poisson variables with intensity

1 The authors gratefully acknowledge funding for this partially provided by NSF Grants DMS-01-04129,
DMS-04-38240, and DMS-04-06085 and by NASA Contracts NAS8-39073 and NAS8-03060(Chandra
X-ray Center).
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whereNt is the number of temperature bins, theI 
 Nt matrix ΛC represents the
continuum emissivity matrix, theI 
Nt matrix Λk�L �Λk�PC represents the emission-line
emissivity matrix, pseudo-continuum emissivity matrix, respectively, for elementk, (e.g.
k �Fe, He),γk is the element abundance for elementk, andδt is the values of the DEM
at temperaturet.

Note the similarity in construction here to a spectral response matrix; we treat the
emissivity matrix as a redistribution matrix to go from temperature space to wavelength
space. The standard instrumental effective area and redistribution matrix are also then
applied.

HIERARCHICAL MISSING DATA STRUCTURING

The model (1) has multiple components (e.g., background, continuum and emission
lines) and complex structure due to large dimensional matrices. Data augmentation
methods such as the EM [1] or DA algorithm [2] make model-fitting simpler especially
in highly structured models. Thus, we impute the missing data at each level, treat them
as if they were observed, and find the conditional posterior distribution of the next level
missing data given the current level. This will eventually lead us to imputing the photon
counts emitted from each temperature, where we treat the emissivity matrix as a RMF-
like “response matrix” and trace the energy bin counts to theunobserved photon counts
in a number of temperature bins. This makes the estimation ofDEM straightforward.

ATOMIC DATA ERRORS

Even the best atomic emissivity databases have missing or misplaced lines and incorrect
emissivities. Our method allows prior information on theseissues to be directly incor-
porated into the analysis.

Error bars on the emissivity matrix: During each iteration of the MCMC sampling
algorithm, we regenerate the emissivity matrix with an error of 10% for H-like and
He-like lines and a 20% error on Fe XVII - Fe XX lines. Further corrections that
include known differences between the predicted and observed fluxes in the EUV
and X-ray regions (e.g., Fe XVIII in X-ray appears to be uniformly underpredicted
by 30%; cf. Desai et al. 2004, this conference) can be included in a similar fashion.

Missing lines: The two main sources of missing lines in current emissivity database
tables are DR lines associated with the weaker resonance lines and lines from high
n (n � 5). We plan to include the former by suitably scaling a template derived
from, e.g., the satellite lines associated with Fe XVIIλ15.02. The magnitude of the
latter can be estimated by considering the asymptotic valueof the fluxes due to
lines from differentn and locating them uniformly between the ionization limit and
the last listed line. This has not yet been implemented.
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FIGURE 1. Error Bars for the Fitted DEMs from Chandra data. The shaded area represents componen-
twise 95% posterior intervals for the DEM. The DEM reconstructed for the EUVE observation by Dupree
et al. [3] is shown. The features in the DEMs are by and large consistent, though our reconstruction shows
a significantly larger emission measure below logT=6.5.

Wavelength errors: Due to incomplete atomic data measurements as well as detector
non-linearities, the observed locations of lines does not in general match the theo-
retical locations. We compensate for this effect by allowing the strongest lines in
the spectral region to be shifted during the fit, and then movethe remaining weaker
lines accordingly.

RESULTS

The raw spectrum of Capella collected from Chandra HRC-S/LETG data. We computed
the maximum a posteriori estimate of the DEM using the EM algorithm starting from a
flat DEM. We fit the model via MCMC to compute the posterior meanand component-
wise 95% posterior intervals using the same starting values. See Figure 1.
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