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Motivation



Markov Chain Monte Carlo Method

e MCMC is a computational tool that is used to generate
samples from a probability distribution.

e Construct a Markov chain that has the desired distribution as
its stationary distribution.

e Usage: estimate unknown parameters, construct error bars for

these estimates, compute the expectation, etc.

e Basic methods: Metropolis-Hastings, Gibbs sampler



Primary Concern

e A properly derived and implemented MCMC method will
produce draws from the joint posterior density once it has
converged to stationarity. As a result, a primary concern is to
ensure that the chain has converged.

e Poor convergence can happen when chains get stuck near
local maxima of the parameter space, which is called the local
trap problem.

e Example: Metropolis-Hastings, get stuck in one mode because
of its inability to step over valleys of low probability.



Potential solutions

What can we do? (Kass et al., 1997)

e Run the chain longer
e Tune algorithm and make it converge faster
e In M-H, this depends on the choice of proposal distribution

proposal
"\-VR Acceptance:
target ~1
Bad mixing

proposal

Acceptance:
target ~0

High rejection

Problems in the proposal distribution and the corresponding
traceplots (Hartig, 2011)

e Alter algorithm in a serious way, e.g. by putting in jumps .
between modes



Alternative Approach: Population-based MCMC

Population-based MCMC is “a population of Markov chains that
run in parallel, each equipped with possibly different but related
invariant distributions” (F Liang et al., 2010).

e Adaptive direction sampling (Gilks et al., 1994)

e Parallel tempering (Geyer et al., 1991)

e Evolutionary Monte Carlo (Liang and Wong, 2000)
Interactions between chains allow the information exchange, and

this helps the target chains to learn from past samples and in turn
improves the convergence.



Methods



Proposed Method: Multiple Chain Method

Features:

e Run multiple chains initiated at different modes

e Propose a two-step jump at each iteration

Intuition:

e By running multiple chains starting at different modes and
enabling between chain jumps, we propose a population based
MCMC method that puts in jumps between modes. Thus we
are able to sample from a multi-modal distribution

successfully.



Step 0: Target Distribution p(-)

()

Univariate distribution with two completely separate modes



Step 1: Initialization

()

X1 x x3 N E

Initialize five chains from dispersed starting values.



Step 2: Update x;

()

Propose y from the neighborhood of x4 (randomly selected) and
accept/reject according to the Metropolis-Hastings rule.



Step 2: Update x;

()

A successful between chain jump!
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Step 3: Update x,

p()

Propose y from the neighborhood of x; (randomly selected) and
reject according to the Metropolis-Hastings rule.
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Step 3: Update x,

1
57 2 80lm) ~ 0
k#2
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MH ratio f = min{1, P02) 80 }

go(+|xx) proposes points from the neighborhood of xy thus
go(x2|xx) is almost 0 as they are from completely separate modes.
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Algorithm

1:

Initialize x?, ..x% ~ 7(-)

2: fort=0to N —1do

133 for i=1to mdo

4: x4 X ~q(- \x )

55 o < min (1, ;f(xf))

6: u<+ U~ U0, 1]

T: if u < « then

8: xf— x

9: end if

10: j+S~{1,2,...mN\{i}

11: y Y ~glylx)

12: B « min (1, 29 £05))
" p(xf) &ily)

13: v+ U~ U0,1]

14: if v < 3 then

15: Xy

16: else

17: Xf“ — x!

18: end if

19: end for

20: end for

// () is the initial distribution

// within chain jump

// between chain jump
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Algorithm

STEP 1 Initialize m chains from dispersed starting values.
STEP 2 For each chain i, propose a two-step jump at each iteation t.

1 Propose a candidate point x by, e.g., usual random walk and
accept by Metropolis rule. (within chain jump)

2 Randomly select another chain j, propose a candidate point y
from the neighborhood of the current state th of chain j, and
accept by MH jumping rule. The MH ratio would be
B = min (1, 2% M) where p(-) is the target distribution

p(xf) &ily)
and gi(y) = i1 Dsyi B0(yIxf). (between chain jump)
Remark e We actually propose a new proposal function g(+|-) in between chain

jump step, which is the average of densities of the proposed point
evaluated at the current iterates of the remaining chains.
e Multiple chain method allows trans-dimensional moves. (see

example 2)
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Toy Example

A mixture of two normals:

)‘N(Mla U%) + (1 - )‘)N(:u27 O'%)
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Results
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Figure 1: Dotplots of draws comparing Metropolis (left) and multiple
chain method (right).

Metropolis is slow to converge in this situation. 16



Example: Bayesian Model Selection

e Given data Y, choose between two models M; and M.
e Make decisions by the Bayes factor (Kass, 1995):
e Notation: By = %
e Interpretation: Evidence provided by the data Y in favor of M,
against My
e How do we compute By ?
e Example:

e Model 1 (My):
Yilp ~ N(u,0?), i=1,2,..n

where 41| 0, o3 ~ N(po, o)

e Model 2 (M,):
Yila, B, Xi ~ N(a + 8Xi,0%), i=1,2,..n

where (o, 8) 7 |ag, Bo, = ~ No((, o)™, X) and

Y =diag(o3, 73).
e X!s are known covariates and o2 is known. 17



Standard Approach

Pr(Y|M>)
Pr(Y|My)
e Compute the densities Pr(Y|M;)(i = 1,2) by integrating out

the model parameters, i.e.

e Target: By; =

Pr(Y|l\/l,-) = /Pr(Y’Qi,M;)W(9;|M,')d9,'

e 0; is the collection of parameters under M;

e m(0;|M;) is the prior density of 6;

e Pr(Y|0;, M;) is the probability density of Y given 6;

e In this example, the integral can be computed analytically and

it turns out that:

o Mi: Y|My ~ N(fozo, o2l + USTTT).

o My: Y|My ~ N((T, Xo) (a0, Bo) T, 021 + (1, Xo) (I, Xo) 7).
And By = % is then computed.
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Multiple Chain Method

e Write the joint posterior density by introducing parameter | that
indexes the model collection, i.e.
2
Pr(1,01,05]Y) x H[Pr(Y\G;, M) (6;| M;) Pr(M;)] o=
i=1

e Pr(M;) is the prior probability that data Y comes from M;
and Pr(M,) =1 — Pr(My).

e [ is the model indicator that specifies data Y comes from M if
| =1, or comes from M, if [ = 2.

Sample from Pr(/,60;,6,]Y) by applying multiple chain method.
Note that trans-dimensional jumps are made between M; and M5,
since dim(62) = dim(601) + 1.

Compute the posterior probability Pr(M;|Y) by simply counting the

frequency of samples that come from M;, W

Recall that ’;:mﬂg = By % g:mfg we can get Bo;.

Our method agrees with the theoretical derivation. 19




Applications




Example: Chandra Data

e Source: Capella
e Strongest non-solar coronal source accessible to X-ray
telescopes
e \ery stable and the overall luminosity has been steady for
many years with no discernible flaring activity

e Instrument: Chandra ACIS-S

e Obtained a set of contiguous observations of Capella during

July 2016 (ObsID: 18358-18364)

Counts'sec/Angstom

18358_kg_m1.pha

Wave ength (Angstrom)

20
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Temperature Models

Multiplicative model: xsphabs * xsvapec

e xsphabs: photo-electric absorption

L o T S
nh

equivalent hydrogen column (in units of 10422 atoms/cm”2)

xsphabs Parameters (Source: Sherpa help page, CXC/SHERPA/AHELP)

e xsvapec: thermal plasma model with variable abundances
mm

kT plasma temperature (keV)

(element) Abundances for He, C, N, O, Ne, Mg, Al, Si, S, Ar, Ca, Fe, Ni with respect to Solar (defined by the set_xsabund command).
The trace element abundances are from the set_xsxset APEC_TRACE_ABUND value, the default is 1.0.
15 redshift  redshift, z

16 —— 10A-14/ (4 pi (D_A*(1+2))*2) Int n_e n_H dV, where D_A is the angular diameter distance to the source (cm), n_e is the
electron density (cmA-3), and n_H is the Hydrogen density (cmA-3)

Xsvapec Parameters (Source: Sherpa help page, CXC/SHERPA/AHELP)

e The parameter of interest is the temperature (xsvapec.kT)

21



Temperature Models

e xsphabs: power law absorption model

e xsvapec: thermal plasma model, describing the optically
thin[*] line[**] and continuum[***] emission from collisionally
excited[****] plasma[*****].

* The probability that a photon is intercepted after emission by

another ion nearby is negligible

** Transitions between quantized energy levels in an ion

*** Transitions that occur when free electrons are absorbed by an

ion or when electrons scatter from each other

**x% Upper energy levels of the ions are populated through inelastic

collisions]

**E** Jonized gas

22



Temperature Models

e We expect there to be a continuum of temperature
components, with the most prominent one probably at 0.54
keV

e Sherpa fit() failed to recover this, so we try MCMC method

e First think of just one temperature component model:
xsphabs.abs1*xsvapec.kT1

e Then two temperature components:
xsphabs.abs1*(xsvapec.kT1+xsvapec.kT2)

23



xsphabs.abs1*xsvapec.kT1

e kT1.He is set to 1 and other element abundances are fixed at
0.6. Thaw Fe and we have four parameters: absl.nH, kT1.kT,
kT1.Fe and kT1.norm.

e For single chain method (usual Metropolis), run 20 parallel
chains for 5,000 iterations and some chains are stuck.

Single chain method Multiple chain method
R e — - =
. ;:ﬁ L i
o ! o
T T T T T T T T T T
0 1000 3000 5000 o] 500 1000 2000
lterations Iterations

Figure 2: Traceplots of kT1.kT comparing single chain (left) and
multiple chain method (right) 24



xsphabs.abs1*xsvapec.kT1

e For multiple chain method, 19 chains go to the same place
whereas 1 chain stays somewhere else.

e No jumping between them as the likelihood of the mode is
much higher.

e Find only one mode where kT1.kT ~ 0.72 keV.

e How about the more realistic model with two temperature

components?

25



xsphabs.abs1*(xsvapec.kT1+xsvapec.kT2)

e kT1.He is set to 1 and other element abundances are fixed at
0.6. Link norm, thaw Fe and we have five parameters:
absl.nH, kT1.kT, kT1.Fe, kT1l.norm and kT2.kT.

e Run 20 parallel chains from two potential modes for 2,000
iterations, where both modes are discovered by the standard
fitting.

e Single chain method stays at the mode where it starts, not
helpful to tell how much proportion one mode will contribute
to the whole distribution.

e Multiple chain method tells that the minor mode seems not
important at all compared with the major mode.

26



xsphabs.abs1*(xsvapec.kT1+xsvapec.kT2)
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Figure 3: Traceplots of kT1.kT comparing single chain (top) and .
multiple chain method (bottom)



Label Switching

Multiple chain method Multiple chain method
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Figure 4: Dotplots of kT1.kT (left) and kT2.kT (right) by running 40

chains from four potential modes (swapping kT1.kT and kT2.kT). 28



Label Switching

Multiple chain method
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Figure 5: Dotplots of kT1.kT in multiple chain method overlaid by the

29
traceplot of the 20th chain.



Label Switching
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Figure 6: Scatterplots of kT2.kT vs kTL1.kT at 1994th iteration (left)
and 1995th iterations (right)



xsphabs.abs1*(xsvapec.kT1+xsvapec.kT2)

e While the multiple chain method may not be able to discover
new modes if not nearby, it can certainly tell the rough
proportion of each mode and which mode is more important.

e kT1.kT = 0.497 with 95% Cl (0.468,0.526) and kT2.kT =
0.889 with 95% Cl (0.868,0.910).

e Sherpa fit() and covariance() outputs:

Param Best-Fit SD
kT1.kT  0.498 0.011
kT2.kT  0.890 0.008

e Sherpa can also get to the minor mode, while the multiple
chain method tells us it may not be worth looking into.

31



xsphabs.abs1*(xsvapec.kT1+xsvapec.kT2)

e Do not link kT.norm!

Multiple chain method

KT1.KT
02 04 06 08 1.0

Iterations

e Found more modes:
e kT1.kT = 0.50 and kT2.kT = 0.89 where kT1.norm = 0.035
and kT2.norm = 0.034
e kT1.kT = 0.60 and kT2.kT = 0.95 where kT1l.norm = 0.045
and kT2.norm = 0.025

e Rough proportion is about 2:1 “
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