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My Motivation

I Pseudomonas aeruginosa is a virulent and opportunistic
bacteria

I A major cause of hospital borne infections and a serious
danger to patients undergoing immunosuppressive
therapy

I P. aeruginosa virulence is, in part, attributed to its type
6 secretion system (T6SS)

I The T6SS originates on the cell membrane of P.
aeruginosa and we want to understand its spatial
distribution with respect to its shape.

I Is the point pattern completely spatially random (CSR)
or is there preferential placement where the T6SS builds
and activates?
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Spatial point pattern analysis in R2

I A spatial point process is the stochastic mechanism
that gives rise to a point pattern

I Intensity measure and function of a process,

µ(B) ≡ E[N(B)] =

∫
B
ρ(x)dx.

I A process is homogeneous if ρ is constant.

I A process is stationary if it is distributionally invariant
to translations.
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Complete spatial randomness on R2

I Poisson process with
constant intensity
function, ρ.

I Poisson number of
points uniformly and
independently
distributed.
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Typical point patterns

(a) Cluster (b) Complete Spatial
Randomness

(c) Regular
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Summary statistics for planar and spatial data

I Determining whether a point pattern exhibits CSR is
normally the first step.

I This is commonly achieved using functional summary
statistics, such as nearest neighbour function.

I Based on these deviations we can suggest whether a
pattern is more regular or clustered.
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Ripley’s K -Function

r

I A popular functional
summary statistic is
Ripley’s K -function,

K (r) =
1

ρ
E[N0(B(0, r))],

I For a homogeneous
Poisson process
K (r) = πr2.

I Estimator is,

K̂ (r) =
Area2(B)

N(N − 1)

6=∑
x,y∈X∩B

1[d(x, y) ≤ r ].
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Interpretation of Ripley’s K -function

I CSR: K̂ (r) ≈ πr2

I Cluster: K̂ (r) > πr2

I Regular: K̂ (r) < πr2

r

K(r)
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Inhomogeneous K -Function

I Ripley’s K -function can be extended to a class of
inhomogeneous processes [1].

I For this class of inhomogeneous processes the
K -function is,

Kinhom(r) = E
∑
x∈X !

y

1[x ∈ B(y, r)]

ρ(x)
,

I Estimators take the form,

K̂inhom(r) =
1

Area(B)

6=∑
x,y∈X∩B

1[x ∈ B(y, r)]

ρ̂(x)ρ̂(y)
,
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Statement of Problem

Let X = {x1, . . . , xN}, with N = |X |, be a spatial
point pattern on a convex space in R3, D. Then
we wish to determine if,

H0 : X is CSR on D H1 : X is not CSR on D
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Point processes on the unit Sphere

I The metric on the unit sphere is the great circle length,

d(x, y) = cos−1(x · y).

I A point process is said to be isotropic on the sphere if
it’s distribution is invariant under rotations [2].

I Poisson processes with intensity function, ρ : S2 7→ R,
on a sphere is defined

1. Poisson(µ(S2)) number of points
2. Given the number of points, these points are

independently distributed with density proportional to
ρ(x) on S2.
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K -Function on sphere for Poisson processes

I K -function for Poisson process is,

K (r) = Kinhom(r) = 2π(1− cos r).

I Non-parametric estimator of Kinhom(r) is,

K̂inhom(r) =
1

4π

6=∑
x,y∈X

1[d(x, y) ≤ r ]

ρ(x)ρ(y)
, (1)
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Main challenge for point pattern analysis on
convex shapes

I K -functions rely on definitions of stationarity/isotropy.

I For a general convex shape these definitions do not
extend.

7→
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Mapping homogeneous Poisson processes from
an ellipsoid to the unit sphere

I Mapping Theorem [3]: A
Poisson process is
invariant under
transformations between
metric spaces.

I Use (x , y , z) 7→
(x/a, y/b, z/c)

I The intensity function
becomes

ρ∗(x) = ρab

[
1−

(
1− c2

a2

)
x21 −

(
1− c2

b2

)
x22

] 1
2

.
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Constructing K -functions for Poisson processes
on ellipsoids

I We can construct K̂inhom(r) as,

K̂inhom(r) =
1

4π(ρab)2

∑
x∈X

∑
y∈X\{x}

1[d(x, y)]

ρ̃(x)ρ̃(y)
,

where ρ̃(x) =
[
1−

(
1− c2

a2

)
x21 −

(
1− c2

b2

)
x22

] 1
2
.

I Use the following unbiased estimator for ρ2,

ρ̂2 =
N(N − 1)

(Area of ellipsoid)2
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Test statistic for complete spatial randomness

I In R2, the L-function is used to determine CSR,

L(r) =

(
K (r)

π

) 1
2

= r ,

as it is variance stabilised.

I We derive Var(K̂inhom(r)) and standardise K̂inhom(r) for
each r to stabilise variance [4].

I We suggest using the following test statistic,

T = sup
r∈[0,π]

∣∣∣∣∣∣ K̂inhom(r)− 2π(1− cos r)√
Var(K̂inhom(r))

∣∣∣∣∣∣
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Example: Homogeneous Poisson process
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Example: Regular process

We simulate the Matèrn 2 process on ellipsoids.

1. Simulate a Poisson process with constant intensity
function ρ.

2. For each point, simulate a mark, from a mark
distribution independently of the locations of all the
points and each other

3. For any two points within a distance R of each other
remove the one with the smaller mark.
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Example: Regular process
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Example: Cluster process

We simulate a Thomas type ellipsoid process.

1. Simulate a parent Poisson process with constant
intensity ρ.

2. For each parent draw N Poisson random variable
offspring.

3. Independently distribute each offspring with a von Mises
Fisher distribution centred at the parent point.
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Example: Cluster process
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Interpretation of K -function ECF

I From the previous plots we see that,
I Regular processes: K (r) is below the lower simulation

envelope for small values of r
I Cluster processes: K (r) is larger than the upper

simulation envelope for many values of r

I This coincides with the interpretation of K (r) for planar
and spatial data.
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H-, F -, and J-function

I The K -function only captures part of the information
within an observed spatial point pattern.

I Other functional summary statistics include,

F (r) = 1− PX∩B(0,r)(∅),
H(r) = 1− PX !

x∩B(0,r)(∅),

J(r) =
1− H(r)

1− F (r)
,
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General convex shapes

I We can use,

f (x) =
x√

x21 + x22 + x23

, (2)

which maps each point of the space uniquely to the
sphere.
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Potential astrophysics applications

I This methodology is not restricted to convex shapes
within R3 but can be applied to convex shapes in any
dimension.

I In particular it could be extended for point patterns on
ellipses.

I Consider an event on a planet. Can we determine if
these events occur more frequently when closer to one
of the foci of it’s orbit?

I For example do natural disasters occur more when the
Earth is closer to the Sun?

I Are the other potential applications?
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