
Inference:
A Python Package for Astrostatistics

A NASA AISR Project

Tom Loredo, Alanna Connors, Travis Oliphant

Cornell/Eureka Scientific/BYU

Motivation
Many advanced methods are conceptually simple but
computationally complex.

Competing methods of very different levels of
sophistication are often similar from end-user’s
perspective.

Principal obstacle to understanding/use is the art of
statistical computing.

Eliminate this obstacle!

The Inference Project

• The Inference package
◮ Library: Deep and broad collection of self-contained

tools tailored to astronomers’ needs; multiple methods

◮ Parametric Inference Engine: Framework for
parametric modeling; multiple methodologies (χ2,
likelihood, Bayes) with unified interface

• Use of a modern VHL language: Python
◮ Single implementation facilitates depth/breadth

◮ VHL features speed development, facilitate testing

◮ Easy access for new users and PyRAF users

• Outreach
◮ Astrostatistics speakers and sessions at conferences

◮ Selected methods from sessions in the package

A Bit About Python

• A general purpose language with a rich standard library

• Sophisticated and fast scientific computing capability

• Simple syntax—resembles “pseudo code,” Matlab/IDL

• Use interactively, or via scripts/modules

• Object oriented, with a very simple object
model—facilitates high level interfaces, modularity

• Practical rather than “pure”—Selected capabilities of
various paradigms (e.g., functional programming, list
comprehensions, metaclasses)

• Easily extendible/embeddable with C/C++/Fortran

• Open source, cross-platform, active & growing user
community

• Named for the British comedy show, not the snake!

Scientific Computing With Python

• Array computations
◮ Syntax inspired by Matlab/IDL/Fortran90

◮ Performance near that of C/Fortran

◮ Numeric: Developed by LLNL/MIT scientists

◮ numarray: Numeric’s successor from STScI

• PyRAF — The IRAF command line in Python (STScI)

• SciPy (partly supported by Enthought, NASA)— special
functions, linear algebra, FFTs, DSP, quadrature, ODE
solvers, optimizers, basic stats

• Plotting: matplotlib, Chaco, various libraries

Simple Example: The Rayleigh Statistic

Search for periodic signals in arrival time series, {ti}.

R(ω) =
1

N





(

∑

i

sin ωti

)2

+

(

∑

i

cos ωti

)2




Sample Source Code

Python source code C source code

from Numeric import *

def Rayleigh (data, w):

wd = w*data

return (sum(sin(wd))**2 +

sum(cos(wd))**2)/len(data)

#include <math.h>

double Rayleigh (int n, double *data,

double w) {

double S, C, wt;

int i;

S = 0.;

C = 0.;

for (i=0; i<n; i++) {

wt = w*data[i];

S += sin(wt);

C += cos(wt);

}

return (S*S + C*C)/n;

}

Library: Tools for Continuous Data

Sampled functions with additive noise, di = f(ti) + ei

• Linear & nonlinear regression: Bershady/Isobe packages,
Bayesian EVM, correlated errors

• Detection/measurement of periodic signals
◮ Standard approaches: Power spectrum, Schuster

periodogram, Lomb-Scargle

◮ Bretthorst algorithm (Bayesian periodograms); Kepler
periodogram

◮ Bayesian piecewise-constant modeling (Gregory
method)

• Nonperiodic time series analysis: ARMA, BB, long-mem.

• Robust estimation/outlier detection

Library: Tools for Discrete Data

• Intervals and limits for rates and ratios from counting:
Feldman-Cousins likelihood ordering, Bayes, ABC, profile
likelihood

• Periodic point processes (period searching in arrival time
data): Rayleigh statistic, Z2

N
, Bayes log-Fourier models,

Gregory-Loredo, adaptive 1-d grid, accelerated (P ,Ṗ)
searching, fractional transforms

• Inhomogeneous point process models for local event
detection: Bayes blocks, Poisson “Haar” wavelets

• Survey analyses: Survival analysis (ASURV), Bayes point
process + noise

• Nonparametric methods: Adaptive splines, neural nets
(interfaces to Max Planck PPI methods), mixture models

Parametric Inference Engine

• Three methodologies: χ2, likelihood, Bayes

• Data types: Point samples, binned, folded; on/off; surveys

• Automate standard parameter exploration tasks
◮ Exploration on equispaced & logarithmic grids

◮ Optimization (unconstrained and with boundary constraints)

◮ Exploration of subsets of parameter space (profiling/projection)

◮ Hessian/information matrix calculation

• Bayesian computation
◮ Marginalization and Bayes factors via adaptive quadrature &

Laplace approximation

◮ Calculation of 1-d, 2-d, 3-d credible region boundaries

◮ Basic Markov chain Monte Carlo (MCMC) support

• Simulate data

Build a model:

class PowerLawModel(ParametricModel):

A = RealParameter(1., ’Amplitude’)

alpha = RealParameter(range=(-5,-1), ’Index’)

def signal(self,E):

return self.A*E**(self.alpha)

Associate data with predictor:

p1 = SampledChisqrPred(data1)
p2 = BinnedChisqrPred(data2)

Make inferences:

inf = ChisqrInference(PowerLawModel, p1, p2)

inf.A.logStep(1., 10., 50)

inf.alpha.vary()

grid = inf.opt()

Returns a grid object w/ projected χ2(A)

	Motivation
	The Inference Project
	A Bit About Python
	Scienti{f}ic Computing With Python
	Simple Example: The Rayleigh Statistic
	Sample Source Code
	Library: Tools for Continuous Data
	Library: Tools for Discrete Data
	Parametric Inference Engine

