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@ Recent projects have focused on two areas:

o Analysis of faint (low-count) x-ray data with Bayesian models
e Analysis of events in time series

@ Each has presented a unique set of challenges
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General analysis of faint x-ray sources

@ In multiwavelength x-ray studies, astronomers identify
potential sources using catalogs in one waveband (typically
optical or infrared) and observe the selected sources in x-rays.

@ This frequently leads to a sample containing many faint,
undetected sources.

@ We want to combine information from these undetected
sources to make inferences about our selected sample.
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Current method: stacking

Based on background subtraction

For source i, observe cs; counts in source aperture and ¢
counts in background aperture.

As,i
Calculate net counts as ¢, ; = ¢5,j — ﬁcbv;, where A ; and
Ap,i are the effective areas for the source and background
regions (taking into account exposures), respectively.

Calculate stacked flux as f, = ZES\F, > Cni, where ECF is

the mean energy conversion factor.
Calculate stacked luminosity as [, = % >.;LCFicy i, where
LCF; is the luminosity conversion factor for source i

and? . ECF X Acorr.i X Keorri
o LCF; = —& y :
EN
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Current method

Problems with conventional stacking

@ Use of background subtraction = Gaussian assumption;
clearly inappropriate here.

@ Above manifests as negative net counts; for sufficiently faint
samples, can lead to negative stacked fluxes and luminosities.

@ No clean measure of uncertainties on luminosities.

@ Solution: model data as Poisson
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A hierarchical Bayesian model for “stacking”

Observation Model

@ For source i, we assume that ¢, ; ~ Pois(\, )

. Api
@ Also assume cp, j ~ Pois(Ap i z2%)
s,i
o Finally, ¢sj — ¢p,i ~ Pois(Ap ;)
Intensity Model

@ If redshifts are known, can model luminosities directly &
assume L; ~ Lognormal(py,op) (or Li ~ T(ay, 51))

@ Otherwise, can apply analogous framework to flux f;.
@ Generally assume Apj ~ (v, Op)

e Using noninformative priors on hyperparameters (Jefferys)




Replacing stacking
oeo

Model

A hierarchical Bayesian model for “stacking”, continued

Key assumptions



Replacing stacking
oeo

Model

A hierarchical Bayesian model for “stacking”, continued

Key assumptions

@ For luminosity-based inference, assuming that redshifts are
known

o Relatively plausible for spectroscopic; not as much for
photometric



Replacing stacking
oeo

Model

A hierarchical Bayesian model for “stacking”, continued

Key assumptions

@ For luminosity-based inference, assuming that redshifts are
known

o Relatively plausible for spectroscopic; not as much for
photometric

@ Assuming the spectra of sources are know & identical
o Typically assume power law with photon index = 1.7



Replacing stacking
oeo
Model

A hierarchical Bayesian model for “stacking”, continued

Key assumptions

@ For luminosity-based inference, assuming that redshifts are
known

o Relatively plausible for spectroscopic; not as much for
photometric

@ Assuming the spectra of sources are know & identical
o Typically assume power law with photon index = 1.7

@ Attempting to make inferences only on selected sample, for
now; not dealing with selection effects, etc.
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Computation

Using data augmentation algorithm with ¢, as missing data

For I hyperdistributions, using Metropolis-Hastings step
within Gibbs sampler to draw o & (3
For Lognormal hyperdistribution, using Gibbs step to draw pi;
& oy ; Metropolis-Hastings step used to draw /\—,,)

o MH step here is very efficient; using Haley's method to identify

posterior modes in parallel and tune proposal distribution.

From posterior simulations, can retain posterior mean &
standard deviation of each source flux (and luminosity, if
available) in addition to hyperparameter samples.
This provides a great deal of information that is not available
with conventional stacking in addition to estimates of sample
properties with uncertainties.
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Potential directions for further work

@ Currently have a very fast method that requires no more data
than conventional stacking (and makes few additional
assumptions).

@ Room for improvement in some areas:

e Explicit handling of the PSF
e Incorporation of spectral uncertainties
e Incorporation of photometric redshift uncertainties
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Testing time symmetry for astronomical events

Possibls Gccultation of Xrays from Scorpius X-1
bya Small Trans-Neptunian Object

@ We have a set of x-ray light curves like the above, each of
which is believed to contain an event (in this case, an
occultation).

@ Interested in testing if the event (a dimming, in this case) is
time-symmetric.
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Problem

Testing time symmetry for astronomical events

@ Even for the Gaussian case, this is not entirely
straightforward.
o Question of how much structure to place on shape of event.
e Taking maximum over possible centers of event for less
structured approach = complex distribution of test statistic.

@ With Poisson data, we really need a structured model.
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Intensity model

e Define A; to be the intensity (count-rate) of our source at
time t

@ We model \; as:
At =c—ag(t;7,0)

where lim¢_,o g(t; 7,0) = lim;—_ g(t; 7,0) = 0 and
supg g(t;7,0) = g(r;7,0) =1

@ Thus, ¢ characterizes our baseline source intensity, «
characterizes the extent of the deviation from this baseline
during the event, and g(t; 7, 0) characterizes the shape of the
event itself.
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counts at time t as:
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Observation model

@ Given our series of intensities \¢, we then model the observed
counts at time t as:

ne ~ Pois (A¢)

@ This approach generalizes easily to the high count regime with
only minor modifications.
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@ We can then test the hypothesis of time symmetry by placing
the appropriate restrictions on 8 and calculating a
likelihood-ratio test statistic.

@ The challenge is then to find a parsimonious yet flexible form
for the “event profile” g(t; 7,6).
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@ Can also use Gaussian profile for event; tradeoff between
degrees of freedom to characterize event and computational
requirements.
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Testing, continued

@ Can also use Gaussian profile for event; tradeoff between
degrees of freedom to characterize event and computational
requirements.

@ Because data is non-Gaussian, still need to simulate under null
hypothesis to obtain actual distribution of test statistic
(cannot necessarily rely on x? approximation).
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Maximizing the likelihood

Another challenge: maximizing the likelihood for this model

It is very multimodal (lots of small, annoying, local maxima)

The good news: only the location parameter 7 is truly

troublesome

@ A solution:

© Randomly draw a set of starting values for 7 (possibly based
on scan statistics or another simple method).

@ For each starting value, run a fast, local optimization
algorithm (such as Gauss-Newton) until convergence.

© Take the maximum of the values given by the local algorithms.

This approach parallelizes extremely well, making it ideal for
use in a cluster environment (such as Odyssey).
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