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Motivation
°

Context & Example

Welcomel

Today we will look at using hierarchical Bayesian modeling to
make inference about the properties of stars; most notably the age
and mass of groups of stars. Complete with a brief dummies
(statisticians) guide to the Astronomy behind it.
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Modelling the CMD
0®00000000000000000

Introduction & Algorithm

ISOCHRONES FOR DUMMIES /STATISTICIANS

Given the mass, age and metallicity of a star, we ‘know’ what its
‘ideal” observation should be i.e., where it should be on the CMD.

The tables of these ‘ideal’ observations are called isochrone tables.

Why are they only ‘ideal’ colours/magnitudes?
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OBSERVATIONAL ERROR

Alas, as with every experiment there are observational errors and
biases caused by the instruments.
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OBSERVATIONAL ERROR

Alas, as with every experiment there are observational errors and
biases caused by the instruments.

1. These are relatively well understood — and can be considered
to be Gaussian with known standard deviation.

2. Importantly, we can characterize the standard deviation as a
function of the observed data.

i.e., given Y; = (Yig, Yiv, Y; )T we have o; = o (Y)).
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THE OBSERVED DATA

We observe (depending on the experiment) p different
colours/magnitudes for n stars.

Although it is equally straightforward to model colours
U — B, B — V etc., and magnitudes B, V/, etc., we will stick with

magnitudes.

The (known) standard deviations in each band are also recorded
for each observation.

We also observe that we observe the n stars in the dataset and
that we didn't observe any others!
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THE LIKELIHOOD 1

1
@ i
yi=| ;mVYi ’A,-,Mf,zwv(?,-,R) i=1....n (1)
11 I
ok
Where,
= - (A1, M}, 2) 1 pBY) pB)
Pe| MM 2) | R=[ B 1 W)
;Y,.-ﬁ'(Ai,Mi,Z) pBD p(V)
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THE LIKELIHOOD II

Let S; = 1 if star i is observed, S; = 0 otherwise.
SilY; ~ Bernoulli (p (Y;)) (2)

where p(Y;) is the probability of a star of a given magnitude being
unobserved (provided by Astronomers).
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THE LIKELIHOOD II

Let S; = 1 if star i is observed, S; = 0 otherwise.
SilY; ~ Bernoulli (p (Y;)) (2)

where p(Y;) is the probability of a star of a given magnitude being
unobserved (provided by Astronomers).

Note: We can also have S; = (S;g, Siv, Si) T and allow for some
stars to be observed only in a subset of the bands.
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THE PARAMETERS
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MAsSs

Before we have any data, the prior distributions of mass and age
are still not independent. We know a priori that old stars cannot
have large mass, likewise for very young stars. Hence, we specify
the prior on mass conditional on age:
1
p (Mi|Ai; Mmin, Mmax (Ai) , ) o< e LM e (Moo Munax (AN} (3)

]

i.e. MilAi, Mmin, Mmax (Ai) , & ~ Truncated-Pareto.
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AGE

For age we assume the following hierarchical structure:

»
Ailita, o2 ~ N (pa, 03) (4)

where A; = logyo (Age), with pa and 03 hyperparameters. . .
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METALLICITY

Denoted by Z;.

Assumed to be known and common to all starsie., Z; =272 =4
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HYPERPARAMETERS

Next, we model the hyperparameters with the simple conjugate
form:

2
g
paloa~ N (Mo, /£> . oa~Inv—x*(w,05)  (5)

Where g, ko, 9 and ag are fixed by the user to represent prior
knowledge (or lack of).
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CORRELATION

We assume a uniform prior over the space of positive definite
correlation matrices.

This isn't quite uniform on each of p(BY), p(B)) and p(VD| but it is
very close.
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INCOMPLETENESS

» Unfortunately, some dimmer stars may not be fully observed.

» This censoring can bias conclusions about the stellar cluster
parameters.
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INCOMPLETENESS

» Unfortunately, some dimmer stars may not be fully observed.

» This censoring can bias conclusions about the stellar cluster
parameters.

» Since magnitudes are functions of photon arrivals, the
censoring is stochastic.
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PUTTING IT ALL TOGETHER

Sii|Yi ~ Bernoulli (p (Y/)) i=1,...;,n,n+1,....,n4+nmis j€{B,V,I}

l)B,‘

-

Yi= ot

i

=y

% ‘A,-,M;,ZNN(?;,R) i=1...nn4+1,.... 04 nms
1
I;

o

M;|Ai, Mpin, & ~ Truncated-Pareto (o — 1, Mmin, Mmax (Ai))

AI|MA,0'/24 <N (/LA,UE\)

2
,u,A|Jf\ ~ N (,uo, %) , o3 ~ Inv — X2 <1/0,0§)
0

p(R) o< 1{Rp.q.}
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OBSERVED-DATA POSTERIOR

The product of the densities on the previous slide gives us the
complete-data posterior. Alas, we don't observe all the stars, and
Nmis is an unknown parameter. For now, lets just condition on
Nmis. We have:

Wops = {na)'[l:n]:(ylv"'ayn)’s:{15'“31307---70)}}
W i {m, Y ((a1):(nrm))s M[(n11): (4 m)]> A(n41):(nt-m)] |
© = {M[l:n]aA[l:n]aﬂA7U,247R}

where X,.;, denotes the vector (X,, Xa41,. .., Xp)
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OBSERVED-DATA POSTERIOR

We want p (©|W,ps) but so far we have p (©, W pnis|Wops). So, we
integrate out the missing data:

P (@|Wobs) = /P (@7 Wmis|Wobs) dW s (6)

In practice, this integration is done by sampling from
p(©,W,,is|W,ps) and retaining only the samples of ©.
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OBSERVED-DATA POSTERIOR

We form a Gibbs sampler to sample from p (©, W ,is|Wps). Given

a current state of our Markov Chain, © = () and W ;s = Wfr?s:
1. Draw ©(t+D) from p <@|W(t) Wobs) (as before)

mis’

2. Draw Wg;“l) from p (W is| 0+ Wps) (new)
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SAMPLING W ;s

At each iteration of the Gibbs sampler we need to draw the missing
data from the appropriate distribution.

In other words, given a bunch of masses, ages, and metallicities of
Nmis Missing stars, find a bunch of Y;'s that are consistent with
that:

pi (YY1t ML A pia, 03 ) o [1 = (Y] (7)
exp {—% (Y,- —F(Yi; Mi, A, Z)) "R (Y; — F(Yi M, A, Z))} (8)

fori=n+1,....,n+m.
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SAMPLING W ;s

Once we have sampled a new set of Y s, we need to sample the
standard deviation of the Gaussian error for those stars.

Here we assume this is a deterministic mapping: o = o (Y;).
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SAMPLING FROM THE POSTERIOR

Some notes:

Paul Baines 093008



Making Inference
0

The Algorithm

SAMPLING FROM THE POSTERIOR

Some notes:

1. We have our model — what does our posterior look like?

Paul Baines 093008



Making Inference
0

The Algorithm

SAMPLING FROM THE POSTERIOR

Some notes:
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2. Ugly. No chance of working with it analytically = MCMC!
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Some notes:

1.

We have our model — what does our posterior look like?

2. Ugly. No chance of working with it analytically = MCMC!
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4. Mass and Age are going to be extremely highly correlated

Going to have to be a Gibbs sampler. How to break it up?

(i.e., sample jointly)
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Making Inference
0

SAMPLING FROM THE POSTERIOR

Some notes:

1.

We have our model — what does our posterior look like?

2. Ugly. No chance of working with it analytically = MCMC!
3.
4. Mass and Age are going to be extremely highly correlated

Going to have to be a Gibbs sampler. How to break it up?

(i.e., sample jointly)

5. No analytic simplification for terms in M;, A; because of f

. High dimensional multi-modal, so we also use parallel

tempering.
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PARALLEL TEMPERING

A brief overview of parallel tempering:

The parallel tempering framework involves sampling N chains, with
the it" chain of the form:

pi(8) = p(Bly)Y" o exp {—H(")} (9)

ti

As t; increases the target distributions become flatter.
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Does it work?

SIMULATION RESULTS

We simulate 100 datasets from the model with n = 100:
pa = 9.2 03 = 0.012
M(miny = 0.8 « = 2.5
R=1
(O’Bi, ov;, U/I.) S (0.03, 0.12)
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Does it work?

Post_p 0.5 1.0 2.5 5.0 25.0 50.0
m_cover 0.6 1.2 2.8 6.0 25.0 49.1
a_cover 0.4 1.1 2.8 6.3 25.1 50.4
mu_age 3.0 3.0 5.0 6.0 30.0 55.0
ss_age 0.0 0.0 3.0 4.0 26.0 47.0
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Results
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Does it work?

Post_p 50.0 75.0 95.0 97.5 99.0 099.5
m_cover 49.1 74.1 94.4 96.6 98.5 99.2
a_cover 50.4 75.3 93.7 97.2 99.0 099.3
mu_age 56.0 81.0 97.0 99.0 100.0 100.0
ss_age 47.0 71.0 94.0 97.0 100.0 100.0
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Conclusion
°

Future Work & Conclusions

FUuTURE WORK

Some important things still need to be built into the model before it is fit
for purpose:

» Extinction/Absorption: Shift in observed data

» Multi-Cluster Models: Allow for multiple stellar clusters
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