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The Method of Maximum Likelihood

R. A. Fisher (1912), “On an absolute criterion for fitting
frequency curves,” Messenger of Math. 41, 155–160

Fisher’s first mathematical paper, written while a final-year
undergraduate in mathematics and mathematical physics at
Gonville and Caius College, Cambridge University

Fisher’s paper started with a criticism of two methods of curve
fitting: the method of least-squares and the method of moments

It is not clear what motivated Fisher to study this subject;
perhaps it was the influence of his tutor, F. J. M. Stratton, an
astronomer
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X: a random variable

θ is a parameter

f(x; θ): A statistical model for X

X1, . . . ,Xn: A random sample from X

We want to construct good estimators for θ

The estimator, obviously, should depend on our choice of f
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Protheroe, et al. “Interpretation of cosmic ray composition – The
path length distribution,” ApJ., 247 1981

X: Length of paths

Parameter: θ > 0

Model: The exponential distribution,

f(x; θ) = θ−1 exp(−x/θ), x > 0

Under this model, E(X) = θ

Intuition suggests using X̄ to estimate θ

X̄ is unbiased and consistent
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LF for globular clusters in the Milky Way

X: The luminosity of a randomly chosen cluster

van den Bergh’s Gaussian model,

f(x) =
1√
2πσ

exp
(
− (x − µ)2

2σ2

)

µ: Mean visual absolute magnitude

σ: Standard deviation of visual absolute magnitude

X̄ and S2 are good estimators for µ and σ2, respectively

We seek a method which produces good estimators
automatically: No guessing allowed
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Choose a globular cluster at random; what is the “chance” that
the LF will be exactly -7.1 mag? exactly -7.2 mag?

For any continuous random variable X, P (X = x) = 0

Suppose X ∼ N(µ = −6.9, σ2 = 1.21), i.e., X has probability
density function

f(x) =
1√
2πσ

exp
(
− (x − µ)2

2σ2

)

then P (X = −7.1) = 0

However, . . .
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f(−7.1) =
1

1.1
√

2π
exp

(
− (−7.1 + 6.9)2

2(1.1)2

)
= 0.37

Interpretation: In one simulation of the random variable X, the
“likelihood” of observing the number -7.1 is 0.37

f(−7.2) = 0.28

In one simulation of X, the value x = −7.1 is 32% more likely to
be observed than the value x = −7.2

x = −6.9 is the value with highest (or maximum) likelihood; the
prob. density function is maximized at that point

Fisher’s brilliant idea: The method of maximum likelihood
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Return to a general model f(x; θ)

Random sample: X1, . . . ,Xn

Recall that the Xi are independent random variables

The joint probability density function of the sample is

f(x1; θ)f(x2; θ) · · · f(xn; θ)

Here the variables are the X ’s, while θ is fixed

Fisher’s ingenious idea: Reverse the roles of the x’s and θ

Regard the X ’s as fixed and θ as the variable
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The likelihood function is

L(θ;X1, . . . ,Xn) = f(X1; θ)f(X2; θ) · · · f(Xn; θ)

Simpler notation: L(θ)

θ̂, the maximum likelihood estimator of θ, is the value of θ where
L is maximized

θ̂ is a function of the X ’s

Note: The MLE is not always unique.
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Example: “... cosmic ray composition – The path length
distribution ...”

X: Length of paths

Parameter: θ > 0

Model: The exponential distribution,

f(x; θ) = θ−1 exp(−x/θ), x > 0

Random sample: X1, . . . ,Xn

Likelihood function:

L(θ) = f(X1; θ)f(X2; θ) · · · f(Xn; θ)

= θ−n exp(−nX̄/θ)
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Maximize L using calculus

It is also equivalent to maximize lnL:

lnL(θ) is maximized at θ = X̄

Conclusion: The MLE of θ is θ̂ = X̄

Maximum Likelihood Estimation and the Bayesian Information Criterion – p. 11/34



LF for globular clusters: X ∼ N(µ, σ2), with both µ, σ unknown

f(x;µ, σ2) =
1√

2πσ2
exp

(
− (x − µ)2

2σ2

)

A likelihood function of two variables,

L(µ, σ2) = f(X1;µ, σ2) · · · f(Xn;µ, σ2)

=
1

(2πσ2)n/2
exp

(
− 1

2σ2

n∑

i=1

(Xi − µ)2
)

Solve for µ and σ2 the simultaneous equations:
∂

∂µ
ln L = 0,

∂

∂(σ2)
ln L = 0

Check that L is concave at the solution (Hessian matrix)
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Conclusion: The MLEs are

µ̂ = X̄, σ̂2 =
1

n

n∑

i=1

(Xi − X̄)2

µ̂ is unbiased: E(µ̂) = µ

σ̂2 is not unbiased: E(σ̂2) = n−1
n σ2 6= σ2

For this reason, we use S2 ≡ n
n−1 σ̂2 instead of σ̂2
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Calculus cannot always be used to find MLEs

Example: “... cosmic ray composition ...”

Parameter: θ > 0

Model: f(x; θ) =

{
exp(−(x − θ)), x ≥ θ

0, x < θ

Random sample: X1, . . . ,Xn

L(θ) = f(X1; θ) · · · f(Xn; θ)

=

{
exp(−

∑n
i=1(Xi − θ)), all Xi ≥ θ

0, otherwise

θ̂ = X(1), the smallest observation in the sample
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General Properties of the MLE

θ̂ may not be unbiased. We often can remove this bias by
multiplying θ̂ by a constant.

For many models, θ̂ is consistent.

The Invariance Property: For many nice functions g, if θ̂ is the
MLE of θ then g(θ̂) is the MLE of g(θ).

The Asymptotic Property: For large n, θ̂ has an approximate
normal distribution with mean θ and variance 1/B where

B = nE
( ∂

∂θ
ln f(X; θ)

)2

The asymptotic property can be used to construct large-sample
confidence intervals for θ
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The method of maximum likelihood works well when intuition
fails and no obvious estimator can be found.

When an obvious estimator exists the method of ML often will
find it.

The method can be applied to many statistical problems:
regression analysis, analysis of variance, discriminant analysis,
hypothesis testing, principal components, etc.
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The ML Method for Linear Regression Analysis

Scatterplot data: (x1, y1), . . . , (xn, yn)

Basic assumption: The xi’s are non-random measurements; the
yi are observations on Y , a random variable

Statistical model: Yi = α + βxi + ǫi, i = 1, . . . , n

Errors ǫ1, . . . , ǫn: A random sample from N(0, σ2)

Parameters: α, β, σ2

Yi ∼ N(α + βxi, σ
2): The Yi’s are independent

The Yi are not identically distributed; they have differing means
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The likelihood function is the joint density of the observed data

L(α, β, σ2) =

n∏

i=1

1√
2πσ2

exp
(
− (Yi − α − βxi)

2

2σ2

)

= (2πσ2)−n/2 exp
(
−

n∑

i=1

(Yi − α − βxi)
2
/

2σ2
)

Use calculus to maximize ln L w.r.t. α, β, σ2

The ML estimators are:

β̂ =

∑n
i=1(xi − x̄)(Yi − Ȳ )∑n

i=1(xi − x̄)2
, α̂ = Ȳ − β̂x̄

σ̂2 =
1

n

n∑

i=1

(Yi − α̂ − β̂xi)
2
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The ML Method for Testing Hypotheses

X ∼ N(µ, σ2)

Model: f(x;µ, σ2) = 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)

Random sample: X1, . . . ,Xn

We wish to test H0 : µ = 3 vs. Ha : µ 6= 3

The space of all permissible values of the parameters
Ω = {(µ, σ) : −∞ < µ < ∞, σ > 0}

H0 and Ha represent restrictions on the parameters, so we are
led to parameter subspaces

ω0 = {(µ, σ) : µ = 3, σ > 0}, ωa = {(µ, σ) : µ 6= 3, σ > 0}
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Construct the likelihood function

L(µ, σ2) =
1

(2πσ2)n/2
exp

(
− 1

2σ2

n∑

i=1

(Xi − µ)2
)

Maximize L(µ, σ2) over ω0 and then over ωa

The likelihood ratio test statistic is

λ =
max

ω0

L(µ, σ2)

max
ωa

L(µ, σ2)
=

max
σ>0

L(3, σ2)

max
µ6=3,σ>0

L(µ, σ2)

Fact: 0 ≤ λ ≤ 1
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L(3, σ2) is maximized over ω0 at

σ2 =
1

n

n∑

i=1

(Xi − 3)2

max
ω0

L(3, σ2) =L
(
3, 1

n

n∑

i=1

(Xi − 3)2
)

=
( n

2πe
∑n

i=1(Xi − 3)2

)n/2
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L(µ, σ2) is maximized over ωa at

µ = X̄, σ2 =
1

n

n∑

i=1

(Xi − X̄)2

max
ωa

L(µ, σ2) =L
(
X̄, 1

n

n∑

i=1

(Xi − X̄)2
)

=
( n

2πe
∑n

i=1(Xi − X̄)2

)n/2
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The likelihood ratio test statistic:

λ2/n =
n

2πe
∑n

i=1(Xi − 3)2
÷ n

2πe
∑n

i=1(Xi − X̄)2

=

n∑

i=1

(Xi − X̄)2 ÷
n∑

i=1

(Xi − 3)2

λ is close to 1 iff X̄ is close to 3

λ is close to 0 iff X̄ is far from 3

λ is equivalent to a t-statistic

In this case, the ML method discovers the obvious test statistic
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The Bayesian Information Criterion

Suppose that we have two competing statistical models

We can fit these models using the methods of least squares,
moments, maximum likelihood, . . .

The choice of model cannot be assessed entirely by these
methods

By increasing the number of parameters, we can always reduce
the residual sums of squares

Polynomial regression: By increasing the number of terms, we
can reduce the residual sum of squares

More complicated models generally will have lower residual
errors
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BIC: Standard approach to model fitting for large data sets

The BIC penalizes models with larger numbers of free
parameters

Competing models:f1(x; θ1, . . . , θm1
) and f2(x;φ1, . . . , φm2

)

Random sample: X1, . . . ,Xn

Likelihood functions: L1(θ1, . . . , θm1
) and L2(φ1, . . . , φm2

)

BIC = 2 ln
L1(θ1, . . . , θm1

)

L2(φ1, . . . , φm2
)
− (m1 − m2) ln n

The BIC balances an increase in the likelihood with the number
of parameters used to achieve that increase
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Calculate all MLEs θ̂i and φ̂i and the estimated BIC:

B̂IC = 2 ln
L1(θ̂1, . . . , θ̂m1

)

L2(φ̂1, . . . , φ̂m2
)
− (m1 − m2) ln n

General Rules:

B̂IC < 2: Weak evidence that Model 1 is superior to Model 2

2 ≤ B̂IC ≤ 6: Moderate evidence that Model 1 is superior

6 < B̂IC ≤ 10: Strong evidence that Model 1 is superior

B̂IC > 10: Very strong evidence that Model 1 is superior
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Competing models for GCLF in the Galaxy

1. A Gaussian model (van den Bergh 1985, ApJ, 297)

f(x;µ, σ) =
1√
2πσ

exp
(
− (x − µ)2

2σ2

)

2. A t-distn. model (Secker 1992, AJ 104)

g(x;µ, σ, δ) =
Γ( δ+1

2 )√
πδ σ Γ( δ

2)

(
1 +

(x − µ)2

δσ2

)− δ+1

2

−∞ < µ < ∞, σ > 0, δ > 0

In each model, µ is the mean and σ2 is the variance

In Model 2, δ is a shape parameter
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We use the data of Secker (1992), Table 1

We assume that the data constitute a random sample

ML calculations suggest that Model 1 is inferior to Model 2

Question: Is the increase in likelihood due to larger number of
parameters?

This question can be studied using the BIC

Test of hypothesis

H0: Gaussian model vs. Ha: t- model
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Model 1: Write down the likelihood function,

L1(µ, σ) =
1

(2πσ2)n/2
exp

(
− 1

2σ2

n∑

i=1

(Xi − µ)2
)

µ̂ = X̄, the ML estimator

σ̂2 = S2, a multiple of the ML estimator of σ2

L1(X̄, S) = (2πS2)−n/2 exp(−(n − 1)/2)

For the Milky Way data, x̄ = −7.14 and s = 1.41

Secker (1992, p. 1476): lnL1(−7.14, 1.41) = −176.4
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Model 2: Write down the likelihood function

L2(µ, σ, δ) =

n∏

i=1

Γ( δ+1
2 )√

πδ σ Γ( δ
2)

(
1 +

(Xi − µ)2

δσ2

)− δ+1

2

Are the MLEs of µ, σ2, δ unique?

No explicit formulas for them are known; we evaluate them
numerically

Substitute the Milky Way data for the Xi’s in the formula for L,
and maximize L numerically

Secker (1992): µ̂ = −7.31, σ̂ = 1.03, δ̂ = 3.55

Secker (1992, p. 1476): lnL2(−7.31, 1.03, 3.55) = −173.0
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Finally, calculate the estimated BIC: With m1 = 2, m2 = 3,
n = 100

B̂IC =2 ln
L1(−7.14, 1.41)

L2(−7.31, 1.03, 3.55)
− (m1 − m2)n

= − 2.2

Apply the General Rules on p. 26 to assess the strength of the
evidence that Model 1 may be superior to Model 2.

Since B̂IC < 2, we have weak evidence that the t-distribution
model is superior to the Gaussian distribution model.

We fail to reject the null hypothesis that the GCLF follows the
Gaussian model over the t-model
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Concluding General Remarks on the BIC

The BIC procedure is consistent: If Model 1 is the true model
then, as n → ∞, the BIC will determine (with probability 1) that it
is.

In typical significance tests, any null hypothesis is rejected if n is
sufficiently large. Thus, the factor lnn gives lower weight to the
sample size.

Not all information criteria are consistent; e.g., the AIC is not
consistent (Azencott and Dacunha-Castelle, 1986).

The BIC is not a panacea; some authors recommend that it be
used in conjunction with other information criteria.

Maximum Likelihood Estimation and the Bayesian Information Criterion – p. 33/34



There are also difficulties with the BIC

Findley (1991, Ann. Inst. Statist. Math.) studied the
performance of the BIC for comparing two models with different
numbers of parameters:

“Suppose that the log-likelihood-ratio sequence of two models
with different numbers of estimated parameters is bounded in
probability. Then the BIC will, with asymptotic probability 1,
select the model having fewer parameters.”
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