
Statistical Inference with Monotone Incomplete
Multivariate Normal Data

This talk is based on joint work with my wonderful co-authors:

Wan-Ying Chang (US Census Bureau)

Megan Romer (Penn State University)

Tomoya Yamada (Sapporo Gakuin University)
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Background

We have a population of “patients”

We draw a random sample of N patients, and measure m
variables on each patient:

1 Visual acuity
2 LDL (low-density lipoprotein) cholesterol
3 Systolic blood pressure
4 Glucose intolerance
5 Insulin response to oral glucose
6 Actual weight ÷ Expected weight
...

...
m White blood cell count
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We obtain data:

Patient 1 2 3 · · · N


v1,1

v1,2

...
v1,m







v2,1

v2,2

...
v2,m







v3,1

v3,2

...
v3,m




· · ·




vN,1

vN,2

...
vN,m




Vector notation: V1, V2, . . . , VN

V1: The measurements on patient 1, stacked into a column

etc.
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Classical multivariate analysis

Statistical analysis of N m-dimensional data vectors

Common assumption: The population has a multivariate normal
distribution

V : The vector of measurements on a randomly chosen patient

Multivariate normal populations are characterized by:

µ: The population mean vector

Σ: The population covariance matrix

For a given data set, µ and Σ are unknown
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We wish to perform inference about µ and Σ

Construct confidence regions for, and test hypotheses about, µ
and Σ

Anderson (2003). An Introduction to Multivariate Statistical
Analysis

Eaton (1984). Multivariate Statistics: A Vector-Space Approach

Johnson and Wichern (2002). Applied Multivariate Statistical
Analysis

Muirhead (1982). Aspects of Multivariate Statistical Theory
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Standard notation: V ∼ Np(µ,Σ)

The probability density function of V : For v ∈ R
m,

f(v) = (2π)−m/2|Σ|−1/2 exp
(
− 1

2(v − µ)′Σ−1(v − µ)
)

V1, V2, . . . , VN : Measurements on N randomly chosen patients

Estimate µ and Σ using Fisher’s maximum likelihood principle

Likelihood function: L(µ,Σ) =
∏N

j=1 f(vj)

Maximum likelihood estimator: The value of (µ,Σ) that
maximizes L
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µ̂ = 1
N

∑N
j=1 Vj: The sample mean and MLE of µ

Σ̂ = 1
N

∑n
j=1(Vj − V̄ )(Vj − V̄ )′: The MLE of Σ

What are the probability distributions of µ̂ and Σ̂?

µ̂ ∼ Np(µ, 1
N Σ)

Law of Large Numbers: µ̂ → µ, a.s., as N → ∞

N Σ̂ has a Wishart distribution, a generalization of the χ2

µ̂ and Σ̂ also are mutually independent
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Monotone incomplete data

Some patients were not measured completely

The resulting data set, with ∗ denoting a missing observation




v1,1

v1,2

v1,3

...
v1,m







∗
v2,2

v2,3

...
v2,m







∗
∗

v3,2

...
v3,m




· · ·




∗
∗
∗
...

vN,m




Monotone data: Each ∗ is followed by ∗’s only

We may need to renumber patients to display the data in
monotone form
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Physical Fitness Data

A well-known data set from a SAS manual on missing data

Patients: Men taking a physical fitness course at NCSU

Three variables were measured:

Oxygen intake rate (ml. per kg. body weight per minute)

RunTime (time taken, in minutes, to run 1.5 miles)

RunPulse (heart rate while running)
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Oxygen RunTime RunPulse

44.609 11.37 178 | 39.407 12.63 174

45.313 10.07 185 | 46.080 11.17 156

54.297 8.65 156 | 45.441 9.63 164

51.855 10.33 166 | 54.625 8.92 146

49.156 8.95 180 | 39.442 13.08 174

40.836 10.95 168 | 60.055 8.63 170

44.811 11.63 176 | 37.388 14.03 186

45.681 11.95 176 | 44.754 11.12 176

39.203 12.88 168 | 46.672 10.00 *
45.790 10.47 186 | 46.774 10.25 *
50.545 9.93 148 | 45.118 11.08 *
48.673 9.40 186 | 49.874 9.22 *
47.920 11.50 170 | 49.091 10.85 *
47.467 10.50 170 | 59.571 * *
50.388 10.08 168 | 50.541 * *

| 47.273 * *
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Monotone data have a staircase pattern; we will consider the
two-step pattern

Partition V into an incomplete part of dimension p and a
complete part of dimension q

(
X1

Y1

)
,

(
X2

Y2

)
, . . . ,

(
Xn

Yn

)
,

(
∗

Yn+1

)
,

(
∗

Yn+2

)
, . . . ,

(
∗

YN

)

Assume that the individual vectors are independent and are
drawn from Nm(µ,Σ)

Goal: Maximum likelihood inference for µ and Σ, with analytical
results as extensive and as explicit as in the classical setting
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Where do monotone incomplete data arise?

Panel survey data (Census Bureau, Bureau of Labor Statistics)

Astrophysics

Early detection of diseases

Wildlife survey research

Covert communications

Mental health research

Climate and atmospheric studies

...
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We have n observations on
(
X
Y

)
and N − n additional

observations on Y

Difficulty: The likelihood function is more complicated

L =

n∏

i=1

fX,Y (xi, yi) ·
N∏

i=n+1

fY (yi)

=
n∏

i=1

fY (yi)fX|Y (xi) ·
N∏

i=n+1

fY (yi)

=

N∏

i=1

fY (yi) ·
n∏

i=1

fX|Y (xi)
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Partition µ and Σ similarly:

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)

Let
µ1·2 = µ1 − Σ12Σ

−1
22 (Y − µ2), Σ11·2 = Σ11 − Σ12Σ

−1
22 Σ21

Y ∼ Nq(µ2,Σ22), X|Y ∼ Np(µ1·2,Σ11·2)

µ̂ and Σ̂: Wilks, Anderson, Morrison, Olkin, Jinadasa, Tracy, ...

Anderson and Olkin (1985): An elegant derivation of Σ̂
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Sample means:

X̄ =
1

n

n∑

j=1

Xj , Ȳ1 =
1

n

n∑

j=1

Yj

Ȳ2 =
1

N − n

N∑

j=n+1

Yj , Ȳ =
1

N

N∑

j=1

Yj

Sample covariance matrices:

A11 =

n∑

j=1

(Xj − X̄)(Xj − X̄)′, A12 =

n∑

j=1

(Xj − X̄)(Yj − Ȳ1)
′

A22,n =
n∑

j=1

(Yj − Ȳ1)(Yj − Ȳ1)
′, A22,N =

N∑

j=1

(Yj − Ȳ )(Yj − Ȳ )′

Statistical Inference with Monotone Incomplete Multivariate Normal Data – p. 15/42



The MLE’s of µ and Σ

Notation: τ = n/N , τ̄ = 1 − τ

µ̂1 = X̄ − τ̄A12A
−1
22,n(Ȳ1 − Ȳ2), µ̂2 = Ȳ

µ̂1 is called the regression estimator of µ1

In sample surveys, extra observations on a subset of variables
are used to improve estimation of a parameter

Σ̂ is more complicated:

Σ̂11 =
1

n
(A11 − A12A

−1
22,nA21) +

1

N
A12A

−1
22,nA22,NA−1

22,nA21

Σ̂12 =
1

N
A12A

−1
22,nA22,N

Σ̂22 =
1

N
A22,N
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Seventy year-old unsolved problems

Explicit confidence levels for elliptical confidence regions for µ

In testing hypotheses on µ or Σ, are the LRT statistics unbiased?

Calculate the higher moments of the components of µ̂

Determine the asymptotic behavior of µ̂ as n or N → ∞

The Stein phenomenon for µ̂?

The crucial obstacle: The exact distribution of µ̂
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The exact distribution of µ̂

Chang and D.R. (J. Multivariate Analysis, 2009): For n > p + q,

µ̂
L
= µ + V1 +

(
1
n − 1

N

)1/2 (Q2

Q1

)1/2
(

V2

0

)
,

where V1, V2, Q1, and Q2 are independent;

V1 ∼ Np+q(0,Ω), V2 ∼ Np(0,Σ11·2), Q1 ∼ χ2
n−q, Q2 ∼ χ2

q ;

Ω = 1
N Σ +

(
1
n − 1

N

)
(

Σ11·2 0

0 0

)
.

Consequences: µ̂ is an unbiased estimator of µ. Also, µ̂1 and µ̂2

are independent iff Σ12 = 0.

Romer and D.R. (2009): Explicit formulas for the V ’s and Q’s
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Computation of the higher moments of µ̂ now is straightforward

Due to the term 1/Q1, even moments exist only up to order n− q

The covariance matrix of µ̂:

Cov(µ̂) =
1

N
Σ +

(n − 2)τ̄

n(n − q − 2)

(
Σ11·2 0

0 0

)

Asymptotics for µ̂: If n,N → ∞ with N/n → δ ≥ 1 then

√
N(µ̂ − µ)

L→ Np+q

(
0,Σ + (δ − 1)

(
Σ11·2 0

0 0

))
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The analog of Hotelling’s T 2-statistic

T 2 = (µ̂ − µ)′Ĉov(µ̂)−1(µ̂ − µ)

where

Ĉov(µ̂) =
1

N
Σ̂ +

(n − 2)τ̄

n(n − q − 2)

(
Σ̂11·2 0

0 0

)

An obvious ellipsoidal confidence region for µ is

{
ν ∈ R

p+q : (µ̂ − ν)′Ĉov(µ̂)−1(µ̂ − ν) ≤ c
}

What is the corresponding confidence level?
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Theorem: For t ≥ 0, P (T 2 ≤ t) is bounded above by

P
(
Fq,N−q ≤ (q−1 − N−1)t

)

and bounded below by

P
(N2Q2

nQ1

(
1 +

qQ3

Q5

)
+

Nq

Q5

(
τ1/2Q

1/2
3 + τ̄1/2Q

1/2
4

)2 ≤ t
)
,

where Q1 ∼ χ2
n−p−q, Q2 ∼ χ2

p, Q3 ∼ χ2
q , Q4 ∼ χ2

q , Q5 ∼ χ2
2,

and Q1, . . . , Q5 are mutually independent.

Romer (2009) has now derived the exact distribution of T 2

Shrinkage estimation for µ when Σ is unknown
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A decomposition of Σ̂

Notation: A11·2,n := A11 − A12A
−1
22,nA21

nΣ̂ = τ

(
A11 A12

A21 A22,n

)
+ τ̄

(
A11·2,n 0

0 0

)

+τ

(
A12A

−1
22,n 0

0 Iq

)(
B B

B B

)(
A−1

22,nA21 0

0 Iq

)

where

(
A11 A12

A21 A22,n

)
∼ Wp+q(n − 1,Σ) and B ∼ Wq(N − n,Σ22)

are independent. Also, N Σ̂22 ∼ Wq(N − 1,Σ22)
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A22,N =

n∑

j=1

(Yj − Ȳ1 + Ȳ1 − Ȳ )(Yj − Ȳ1 + Ȳ1 − Ȳ )′

+

N∑

j=n+1

(Yj − Ȳ2 + Ȳ2 − Ȳ )(Yj − Ȳ2 + Ȳ2 − Ȳ )′

A22,N = A22,n + B

B =

N∑

j=n+1

(Yj − Ȳ2)(Yj − Ȳ2)
′ +

n(N − n)

N
(Ȳ1 − Ȳ2)(Ȳ1 − Ȳ2)

′

Verify that the terms in the decomposition of Σ̂ are independent
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The marginal distribution of Σ̂11 is non-trivial

If Σ12 = 0 then A22,n, B, A11·2,n, A12A
−1
22,nA21, X̄, Ȳ1, and Ȳ2 are

independent

Matrix F -distribution: F
(q)
a,b = W

−1/2
2 W1W

−1/2
2

where W1 ∼ Wq(a,Σ22) and W2 ∼ Wq(b,Σ22)
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Theorem: Suppose that Σ12 = 0. Then

Σ
−1/2
11 Σ̂11Σ

−1/2
11

L
=

1

n
W1 +

1

N
W

1/2
2

(
Ip + F

)
W

1/2
2

where W1, W2, and F are independent, and

W1 ∼ Wp(n − q − 1, Ip), W2 ∼ Wp(q, Ip), and

F ∼ F
(p)
N−n,n−q+p−1

NΣ
−1/2
11 Σ̂11Σ

−1/2
11

L
=

N

n
Σ
−1/2
11 A11·2,nΣ

−1/2
11

+ Σ
−1/2
11 A12A

−1
22,n(A22,n + B)A−1

22,nA21Σ
−1/2
11
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Theorem: With no assumptions on Σ12,

Σ̂12Σ̂
−1
22

L
= Σ12Σ

−1
22 + Σ

1/2
11·2W

−1/2KΣ
−1/2
22

where W and K are independent, and

W ∼ Wp(n − q + p − 1, Ip), K ∼ Npq(0, Ip ⊗ Iq)

In particular, Σ̂12Σ̂
−1
22 is an unbiased estimator of Σ12Σ

−1
22

The general distribution of Σ̂ requires the hypergeometric
functions of matrix argument

Saddlepoint approximations
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The distribution of |Σ̂| is much simpler:

|Σ̂| = |Σ̂11·2| · |Σ̂22|

|Σ̂11·2| and |Σ̂22| are independent; each is a product of
independent χ2 variables

Hao and Krishnamoorthy (2001):

|Σ̂| L
= n−pN−q |Σ| ·

p∏

j=1

χ2
n−q−j ·

q∏

j=1

χ2
N−j

It now is plausible that tests of hypothesis on Σ are unbiased
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Testing Σ = Σ0

Data: Two-step, monotone incomplete sample

Σ0: A given, positive definite matrix

Test H0 : Σ = Σ0 vs. Ha : Σ 6= Σ0 (WLOG, Σ0 = Ip+q)

Hao and Krishnamoorthy (2001): The LRT statistic is

λ1 ∝ |A22,N |N/2 exp
(
− 1

2 tr A22,N

)

×|A11·2,n|n/2 exp
(
− 1

2 tr A11·2,n

)

× exp
(
− 1

2 tr A12A
−1
22,nA21)

)
.

Is the LRT unbiased? If C is a critical region of size α, is

P (λ1 ∈ C|Ha) ≥ P (λ1 ∈ C|H0)?
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Pitman (1939): Even with 1-d data, λ1 is not unbiased

Bartlett: λ1 becomes unbiased if sample sizes are replaced by
degrees of freedom

With two-step monotone data, perhaps a similarly modified
statistic, λ2, is unbiased?

Answer: Still unknown.

Theorem: If |Σ11| < 1 then λ2 is unbiased

With monotone incomplete data, further modification is needed
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Theorem: The modified LRT,

λ3 ∝ |A22,N |(N−1)/2 exp
(
− 1

2 tr A22,N

)

× |A11·2,n|(n−q−1)/2 exp
(
− 1

2 tr A11·2,n

)

× |A12A
−1
22,nA21|q/2 exp

(
− 1

2 tr A12A
−1
22,nA21

)
,

is unbiased. Also, λ1 is not unbiased

For diagonal Σ = diag(σjj), the power function of λ3 increases
monotonically as any |σjj − 1| increases, j = 1, . . . , p + q.
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With monotone two-step data, test

H0 : (µ,Σ) = (µ0,Σ0) vs. Ha : (µ,Σ) 6= (µ0,Σ0)

where µ0 and Σ0 are given. The LRT statistic is

λ4 = λ1 exp
(
− 1

2(nX̄ ′X̄ + NȲ ′Ȳ )
)

Remarkably, λ4 is unbiased

The sphericity test, H0 : Σ ∝ Ip+q vs. Ha :6∝ Ip+q

The unbiasedness of the LRT statistic is an open problem
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The Stein phenomenon for µ̂

µ̂: The mean of a complete sample from Nm(µ, Im)

Quadratic loss function: L(µ̂, µ) = ‖µ̂ − µ‖2

Risk function: R(µ̂) = E L(µ̂, µ)

C. Stein: µ̂ is inadmissible for m ≥ 3

James-Stein estimator for shrinking µ̂ to ν ∈ R
m:

µ̂c =

(
1 − c

‖µ̂ − ν‖2

)
(µ̂ − ν) + ν

Baranchik’s positive-part shrinkage estimator:

µ̂+
c =

(
1 − c

‖µ̂ − ν‖2

)

+

(µ̂ − ν) + ν
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We collect a monotone incomplete sample from Np+q(µ,Σ)

Does the Stein phenomenon hold for µ̂, the MLE of µ?

The phenomenon seems almost universal: It holds for many
loss functions, inference problems, and distributions

Various results available on shrinkage estimation of Σ with
incomplete data, but no such results available for µ

The crucial impediment: The distribution of µ̂ was unknown
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Theorem (Yamada and D.R.): For p ≥ 2, n ≥ q + 3, and

Σ = Ip+q, both µ̂ and µ̂c are inadmissible:

R(µ̂) > R(µ̂c) > R(µ̂+
c )

for all ν ∈ R
p+q and all c ∈ (0, 2c∗), where

c∗ =
p − 2

n
+

q

N
.

Non-radial loss functions

Replace ‖µ̂ − ν‖2 by non-radial functions of µ̂ − ν

Shrinkage to a random vector ν, calculated from the data
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Kurtosis tests for multivariate normality

m-dimensional complete, random sample: V1, . . . , VN

Extensive literature on testing for multivariate normality

Mardia’s statistic for testing for kurtosis:

b2,m =
N∑

j=1

[
(Vj − V̄ )′S−1(Vj − V̄ )

]2

Invariance under nonsingular affine transformations of the data

Asymptotic distribution of b2,m
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Monotone incomplete data, i.i.d., unknown population:
(

X1

Y1

)
,

(
X2

Y2

)
, . . . ,

(
Xn

Yn

)
,

(
∗

Yn+1

)
,

(
∗

Yn+2

)
, . . . ,

(
∗

YN

)

A generalization of Mardia’s statistic:

β̂ =

n∑

j=1

[((
Xj

Yj

)
− µ̂

)′

Σ̂−1

((
Xj

Yj

)
− µ̂

)]2

+

N∑

j=n+1

[
(Yj − µ̂2)

′Σ̂−1
22 (Yj − µ̂2)

]2
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An alternative to β̂

Impute each missing Xj using linear regression:

X̂j =

{
Xj , 1 ≤ j ≤ n

µ̂1 + Σ̂12Σ̂
−1
22 (Yj − µ̂2), n + 1 ≤ j ≤ N

Construct

β̂∗ =

N∑

j=1

[((
X̂j

Yj

)
− µ̂

)′

Σ̂−1

((
X̂j

Yj

)
− µ̂

)]2

A remarkable result: β̂ ≡ β̂∗

β̂ is invariant under nonsingular affine transformations of the
data
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Yamada, Romer, and D.R. (2010): Under certain regularity
conditions,

(β̂ − c1)/c2
L→ N(0, 1)

as n,N → ∞

The constants c1, c2 depend on n,N and the underlying
population distribution

In the normal case, c1, c2 depend only on n,N, p, q
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Astrostatistics research problems

K. R. Lang, Astrophysical Formulae, Vol. II: Space, Time, Matter
and Cosmology, 3rd. ed., Springer, 2006

Numerous monotone incomplete data sets

Is it true that astrophysicists often discard incomplete data?

Incomplete longitudinal data (light curves, luminosity data)

Incomplete time series

Small-sample distributions of test statistics, e.g., Mardia’s
statistic, often are unexplored even with complete data

How to relax the MCAR assumption to MAR?
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A. Isenman, “Modern Multivariate Statistical Techniques:
Regression, Classification, and Manifold Learning,” Springer,
2008

COMBO-17 Survey

Apply classical multivariate statistical procedures (principal
components, MANOVA, ...) to the COMBO-17 survey

I hear that some variables in the survey “are not of scientific
interest,” e.g., the absence of high-redshift (i.e. distant)
high-absolute-magnitude (i.e. faint) galaxies, the dropoff in flux
with redshift, the dropoff in image size with redshift, ...
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Carry out a statistical analysis of the variables which “are not of
scientific interest”

Discover amazing results that put you in the NY Times and

Get an invitation to Stockholm

Send me 10% of the prize money (I’m a reasonable guy)
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