Computational Challenges in the Statistical Analysis of Stellar Evolution

Nathan Stein

with David van Dyk, Ted von Hippel, Steven DeGennaro, William H. Jefferys, Elizabeth Jeffery

October 20, 2009

The Model

- ▶ y_i = (y_{i1},..., y_{iJ}) = vector of magnitudes observed through J different filters
- $(M_{i1}, M_{i2}) =$ primary and secondary mass of star *i*
- θ = vector of cluster parameters
- $G(M, \theta)$ = deterministic stellar evolution model
- Observational uncertainties Σ_i assumed known
- Gaussian errors:

$$\mathbf{y}_i | M_i, \boldsymbol{ heta}, \mathbf{\Sigma}_i \sim N(\boldsymbol{\mu}_i, \mathbf{\Sigma}_i),$$

- For single-star systems, $\mu_{ij} = G_j(M_{i1}, \theta)$
- For main sequence-main sequence binaries,

$$\mu_{ij} = -2.5 \log_{10} \left(10^{-G_j(M_{i1}, \theta)/2.5} + 10^{-G_j(M_{i2}, \theta)/2.5} \right)$$

- Mixture model to account for field star contamination
- Informative prior distributions on physical parameters

Posterior Correlations

Posterior Correlations

Improving Mixing

- Widths of proposal distributions (Metropolis jumping rules) are automatically tuned during burn-in
- > Parameters are transformed to remove linear correlations

$$\begin{split} M_{i1} &= U_i + \beta_{R,i}(R_i - \hat{R}_i) + \beta_{\text{age},i}(\theta_{\text{age}} - \hat{\theta}_{\text{age}}) \\ &+ \beta_{[\text{Fe}/\text{H}],i}(\theta_{[\text{Fe}/\text{H}]} - \hat{\theta}_{[\text{Fe}/\text{H}]}) + \beta_{m-M_V,i}(\theta_{m-M_V} - \hat{\theta}_{m-M_V}) \\ \theta_{A_V} &= V + \gamma_{[\text{Fe}/\text{H}]}(\theta_{[\text{Fe}/\text{H}]} - \hat{\theta}_{[\text{Fe}/\text{H}]}) + \gamma_{m-M_V}(\theta_{m-M_V} - \hat{\theta}_{m-M_V}) \end{split}$$

Improved Mixing

Removing Linear Correlations Is Not Enough

Power Law

More Correlations: 'Decorrelated' Masses?

Accelerating MCMC

- ▶ Want to sample $\pi(\theta)$ with $\theta = (\theta_1, \dots, \theta_D) \in \Theta$
- Can obtain approximate sample (e.g., via trial run of inefficient MCMC sampler)
- Choose threshold $c \in (0,1)$
- r_{ij} = sample correlation of θ_i and θ_j

•
$$\mathcal{I} = \{i : |r_{ij}| \ge c \text{ for some } j \neq i\}$$

- $\blacktriangleright M = |\mathcal{I}|$
- $\blacktriangleright \ \boldsymbol{\theta} = (\boldsymbol{\theta}_{[\mathcal{I}]}, \boldsymbol{\theta}_{[-\mathcal{I}]})$
- $\{\mathbf{w}_1, \dots, \mathbf{w}_M\}$ are linearly independent eigenvectors of $cov(\boldsymbol{\theta}_{[\mathcal{I}]})$
- ▶ $\{\mathbf{w}_i\}$ forms orthonormal basis for *M*-dimensional subspace of $\mathbf{\Theta}$
- $\mathbf{W} = M \times M$ matrix with columns \mathbf{w}_i
- Alternative parameterization $\phi = \mathbf{W}^{\mathsf{T}} \boldsymbol{\theta}_{[\mathcal{I}]}$

Accelerating MCMC: Algorithm

New MCMC scheme:

1. Update
$$\theta^{(t+0.5)} = \mathsf{MCMC}(\theta^{(t)})$$

2. Set
$$\phi^{(t+0.5)} = \mathbf{W}^T \boldsymbol{\theta}_{[\mathcal{I}]}^{(t+0.5)}$$

3. Draw
$$\phi^{(t+1)} \sim \pi(\phi | \boldsymbol{\theta}_{[-\mathcal{I}]}^{(t+0.5)})$$
 (e.g., via Metropolis within Gibbs)

4. Set
$$\boldsymbol{\theta}_{[\mathcal{I}]}^{(t+1)} = \mathbf{W} \boldsymbol{\phi}^{(t+1)}$$
 and $\boldsymbol{\theta}_{[-\mathcal{I}]}^{(t+1)} = \boldsymbol{\theta}_{[-\mathcal{I}]}^{(t+0.5)}$

х

Different Random Seeds

Multiple Modes

Multiple Modes

Multiple Modes

