Introduction	The Model	Fitting The Model	An Interweaving Strategy	Results	Conclusions

BAYESIAN COMPUTATION IN COLOR-MAGNITUDE DIAGRAMS SA, AA, PT, EE, MCMC and ASIS in CMDs

Paul Baines

Department of Statistics Harvard University

October 19, 2009

101909

Paul Baines

Bayesian Computation in Color-Magnitude Diagrams

OVERVIEW

- Motivation and Introduction
- Modelling Color-Magnitude Diagrams
- Bayesian Statistical Computation
- Acronyms in SC: MH, ASIS, EE, PT

Image: A = 10 million

STELLAR POPULATIONS

We want to study stars, or 'clusters' of stars, and are interested in their mass and age, and sometimes their metallicity.

101909

STELLAR POPULATIONS

We want to study stars, or 'clusters' of stars, and are interested in their mass and age, and sometimes their metallicity.

The way this is usually done is by:

- I Taking photometric observations of the stars in a number of different wavelengths,
- II Compare observed values with what the theory predicts, and,
- III Select mass, age and metallicity to minimize the χ^2 statistic.

STELLAR POPULATIONS

We want to study stars, or 'clusters' of stars, and are interested in their mass and age, and sometimes their metallicity.

The way this is usually done is by:

- I Taking photometric observations of the stars in a number of different wavelengths,
- $\scriptstyle\rm II$ Compare observed values with what the theory predicts, and,
- III Select mass, age and metallicity to minimize the χ^2 statistic.
- ... doesn't utilize any knowledge of underlying structure, propagation of error, hard to extend coherently...

◆□▶ ◆□▶ ◆□▶ ◆□♪

Isochrones: Metallicity = 4

B-V

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Isochrones: Metallicity = 4

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三百 - のへで

NGC 104 (47 Tuc)

GAUSSIAN ERRORS

The observed magnitudes in different bands would ideally match the theoretical isochrone values, but there is both (i) measurement error, and, (ii) natural variability (photon arrivals).

The uncertainty at this stage is treated as Gaussian, although these can be correlated across bands.

Image: A match a ma

GAUSSIAN ERRORS

The observed magnitudes in different bands would ideally match the theoretical isochrone values, but there is both (i) measurement error, and, (ii) natural variability (photon arrivals).

The uncertainty at this stage is treated as Gaussian, although these can be correlated across bands.

(Mechanically unimportant)

Image: A match a ma

The Likelihood

ı.

Assuming gaussian errors with common correlation matrix:

$$y_i \left| A_i, M_i, Z \sim N\left(\tilde{f}_i, \mathbf{R}\right) \qquad i = 1, \dots, n$$
 (1)

Where,

Paul Baines

$$y_{i} = \begin{pmatrix} \frac{1}{\sigma_{i}^{(B)}}B_{i} \\ \frac{1}{\sigma_{i}^{(V)}}V_{i} \\ \frac{1}{\sigma_{i}^{(V)}}I_{i} \end{pmatrix}, \tilde{f}_{i} = \begin{pmatrix} \frac{1}{\sigma_{Bi}} \cdot f_{b}(M_{i}, A_{i}, Z) \\ \frac{1}{\sigma_{Vi}} \cdot f_{v}(M_{i}, A_{i}, Z) \\ \frac{1}{\sigma_{Ii}} \cdot f_{i}(M_{i}, A_{i}, Z) \end{pmatrix}, \mathbf{R} = \begin{pmatrix} 1 & \rho^{(BV)} & \rho^{(BI)} \\ \rho^{(BV)} & 1 & \rho^{(VI)} \\ \rho^{(BI)} & \rho^{(VI)} & 1 \end{pmatrix}$$

101909

E

590

◆ロト ◆聞ト ◆国ト ◆国ト

Bayesian Computation in Color-Magnitude Diagrams

The Likelihood

÷

Assuming gaussian errors with common correlation matrix:

$$y_i \left| A_i, M_i, Z \sim N\left(\tilde{f}_i, \mathbf{R}\right) \qquad i = 1, \dots, n$$
 (1)

イロト イポト イヨト イヨト

101909

Where,

$$y_{i} = \begin{pmatrix} \frac{1}{\sigma_{i}^{(B)}}B_{i} \\ \frac{1}{\sigma_{i}^{(V)}}V_{i} \\ \frac{1}{\sigma_{i}^{(V)}}I_{i} \end{pmatrix}, \tilde{f}_{i} = \begin{pmatrix} \frac{1}{\sigma_{Bi}} \cdot f_{b}(M_{i}, A_{i}, Z) \\ \frac{1}{\sigma_{Vi}} \cdot f_{v}(M_{i}, A_{i}, Z) \\ \frac{1}{\sigma_{Ii}} \cdot f_{i}(M_{i}, A_{i}, Z) \end{pmatrix}, \mathbf{R} = \begin{pmatrix} 1 & \rho^{(BV)} & \rho^{(BI)} \\ \rho^{(BV)} & 1 & \rho^{(VI)} \\ \rho^{(BI)} & \rho^{(VI)} & 1 \end{pmatrix}$$

Now, we assume a hierarchical Bayesian model on the mass, age, and metallicities.

Bayesian Computation in Color-Magnitude Diagrams

Isochrone table layout (support)

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

JOINT DISTRIBUTION OF MASS AND AGE

Even before we observe any data, we know that the distributions of stellar mass and age are not independent. We know *a priori* that, (for a star to be in the population of all possibly observable stars), old stars cannot have large mass, likewise for very young stars. Hence, we specify the prior on mass conditional on age:

$$p(M_i|A_i, M_{min}, M_{max}(A_i), \alpha) \propto \frac{1}{M_i^{\alpha}} \cdot \mathbf{1}_{\{M_i \in [M_{min}, M_{max}(A_i)]\}}$$
(2)

イロト イポト イヨト イヨト

101909

i.e. $M_i | A_i, M_{min}, M_{max} (A_i), \alpha \sim \text{Truncated-Pareto.}$

Bayesian Computation in Color-Magnitude Diagrams

Introduction The Model Fitting The Model An Interweaving Strategy Results Conclusions

For age we assume the following hierarchical structure:

$$A_i|\mu_A, \sigma_A^2 \stackrel{iid}{\sim} N\left(\mu_A, \sigma_A^2\right) \tag{3}$$

◆ロト ◆聞ト ◆国ト ◆国ト

where $A_i = \log_{10} (Age)$, with μ_A and σ_A^2 hyperparameters...

Introduction The Model Fitting The Model An Interweaving Strategy Results Conclusions

Age

For age we assume the following hierarchical structure:

$$A_i|\mu_A, \sigma_A^2 \stackrel{iid}{\sim} N\left(\mu_A, \sigma_A^2\right) \tag{3}$$

イロト イポト イヨト イヨト

where $A_i = \log_{10} (Age)$, with μ_A and σ_A^2 hyperparameters...

Idea: Allow greater flexibility/reduce dimensionality, investigate strength of assumptions, capture underlying structure, correlation etc

HYPERPARAMETERS

Next, we model the hyperparameters with the simple conjugate form:

$$\mu_{A}|\sigma_{A}^{2} \sim N\left(\mu_{0}, \frac{\sigma_{A}^{2}}{\kappa_{0}}\right), \qquad \sigma_{A}^{2} \sim Inv - \chi^{2}\left(\nu_{0}, \sigma_{0}^{2}\right) \qquad (4)$$

Where μ_0, κ_0, ν_0 and σ_0^2 are fixed by the user to represent prior knowledge (or lack of).

Sensitivity (or robustness) to the prior is of great interest.

CORRELATION

We assume a uniform prior over the space of positive definite correlation matrices.

This isn't quite uniform on each of $\rho^{(BV)}, \rho^{(BI)}$ and $\rho^{(VI)}$, but it is close for low dimensions.

Introduction	The Model	Fitting The Model	An Interweaving Strategy	Results	Conclusions

PUTTING IT ALL TOGETHER

$$y_{i} = \begin{pmatrix} \frac{1}{\sigma_{i}^{(B)}}B_{i} \\ \frac{1}{\sigma_{i}^{(V)}}V_{i} \\ \frac{1}{\sigma_{i}^{(I)}}I_{i} \end{pmatrix} \left| A_{i}, M_{i}, Z \sim N\left(\tilde{f}_{i}, \mathbf{R}\right) \quad i = 1, \dots, n. \end{cases}$$

$$\begin{split} M_i | A_i, M_{min}, \alpha &\sim \text{Truncated-Pareto} \left(\alpha - 1, M_{min}, M_{max} \left(A_i \right) \right) \\ A_i | \mu_A, \sigma_A^2 \stackrel{iid}{\sim} \mathcal{N} \left(\mu_A, \sigma_A^2 \right) \\ \mu_A | \sigma_A^2 &\sim \mathcal{N} \left(\mu_0, \frac{\sigma_A^2}{\kappa_0} \right), \qquad \sigma_A^2 \sim \mathit{Inv} - \chi^2 \left(\nu_0, \sigma_0^2 \right) \\ p(\mathbf{R}) &\propto \mathbf{1}_{\{\mathbf{R}p.d.\}} \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

101909

Paul Baines

Bayesian Computation in Color-Magnitude Diagrams

(Almost) everything must use a Gibbs sampler (or conditional maximization) if it has lots of parameters. Gibbs is great but its failings are well documented. Three top-of-the-range tools for building your MCMC scheme:

(Almost) everything must use a Gibbs sampler (or conditional maximization) if it has lots of parameters. Gibbs is great but its failings are well documented. Three top-of-the-range tools for building your MCMC scheme:

1. Parallel Tempering (Geyer, 1991)

< □ > < □ > < □ > < □ >

(Almost) everything must use a Gibbs sampler (or conditional maximization) if it has lots of parameters. Gibbs is great but its failings are well documented. Three top-of-the-range tools for building your MCMC scheme:

- 1. Parallel Tempering (Geyer, 1991)
- 2. Equi-Energy Sampling (Kou, Zhou & Wong, 2006)

(Almost) everything must use a Gibbs sampler (or conditional maximization) if it has lots of parameters. Gibbs is great but its failings are well documented. Three top-of-the-range tools for building your MCMC scheme:

- 1. Parallel Tempering (Geyer, 1991)
- 2. Equi-Energy Sampling (Kou, Zhou & Wong, 2006)
- 3. Ancillarity-Sufficiency Interweaving (ASIS) (Yu & Meng, 2009)

(Almost) everything must use a Gibbs sampler (or conditional maximization) if it has lots of parameters. Gibbs is great but its failings are well documented. Three top-of-the-range tools for building your MCMC scheme:

- 1. Parallel Tempering (Geyer, 1991)
- 2. Equi-Energy Sampling (Kou, Zhou & Wong, 2006)
- 3. Ancillarity-Sufficiency Interweaving (ASIS) (Yu & Meng, 2009)

We now take a 'hands on' look at these in developing a robust algorithm for analysis Color-Magnitude data.

Default MCMC

Algorithm

Let
$$\Theta^{(t)} = \left\{ (M_i^{(t)}, A_i^{(t)}) : i = 1, \dots, n \right\}.$$

0. Set t = 0. Choose starting states $\Theta^{(0)}$, $\mu_a^{(0)}$, $\sigma_a^{(0)}$.

1. Draw
$$\Theta^{(t+1)}$$
 from $\{M_i, A_i\}_{i=1,...,n} | \mu_a^{(t)}, \sigma_a^{(t)}, \mathbf{Y}$.

2. Draw
$$\mu_a^{(t+1)}, \sigma_a^{(t+1)}$$
 from $\mu_a, \sigma_a | \Theta^{(t+1)}, \mathbf{Y}$.

3. Increment $t \mapsto t + 1$, return to 1.

Default MCMC

Algorithm

Let
$$\Theta^{(t)} = \left\{ (M_i^{(t)}, A_i^{(t)}) : i = 1, \dots, n \right\}.$$

0. Set t = 0. Choose starting states $\Theta^{(0)}$, $\mu_a^{(0)}$, $\sigma_a^{(0)}$.

1. Draw $\Theta^{(t+1)}$ from $\{M_i, A_i\}_{i=1,...,n} | \mu_a^{(t)}, \sigma_a^{(t)}, \mathbf{Y}$.

2. Draw
$$\mu_a^{(t+1)}, \sigma_a^{(t+1)}$$
 from $\mu_a, \sigma_a | \Theta^{(t+1)}, \mathbf{Y}$.

3. Increment $t \mapsto t + 1$, return to 1.

The samples $(\Theta^{(t)}, \mu_a^{(t)}, \sigma_a^{(t)})$, for $t = B + 1, \dots, B + N$ form a sample from the target distribution (approximately)...

Iterations

N = 1000 Bandwidth = 0.02826

Trace of mu_age

Density of mu_age

N = 1000 Bandwidth = 0.08882 Density of ss_age

0.001000

590

12

0 0

9.20

True(mu_age)

0

0

9.15

8.6

9.10

&ଡ

0

 ∞

9.25

◆□▶ ◆□▶ ◆三≯ ◆三≯ 三三 - のへで

9.30

Introduc	roduction The Model		odel	Fitting The Model		An Interweaving Strategy		Results	Conclusions	
_										
		1%	2.5%	5%	25%	50%	75%	95%	97.5%	99%
_	mi	1.0	2.5	4.9	26.4	51.1	76.2	95.0	97.5	98.8
	ai	0.5	1.5	3.4	15.4	30.8	46.4	61.1	63.5	64.9
	μ_{a}	0.4	1.3	2.4	14.9	31.8	49.2	62.1	63.5	64.1
	σ_a^2	17.6	22.6	27.7	48.6	68.3	85.1	97.5	98.9	99.6

 $\ensuremath{\mathbf{TABLE}}$: Coverage table for the standard SA sampler and synthetic isochrones

E

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣べで

FIGURE: Convergence plots for standard sampler (synthetic isochrones)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

INTRO TO INTERWEAVING

From Yu & Meng (2009): Consider,

$$\begin{array}{ll} Y_{obs}|\theta,Y_{mis} & \sim & \mathcal{N}(Y_{mis},1) \\ Y_{mis}|\theta & \sim & \mathcal{N}(\theta,V). \end{array} \tag{5}$$

INTRO TO INTERWEAVING

From Yu & Meng (2009): Consider,

$$Y_{obs}|\theta, Y_{mis} \sim N(Y_{mis}, 1)$$
 (5)

$$Y_{mis}|\theta \sim N(\theta, V).$$
 (6)

イロト イポト イヨト イヨト

The standard Gibbs sampler iterates between:

$$Y_{mis}|\theta, Y_{obs} \sim N\left(\frac{\theta + VY_{obs}}{1 + V}, \frac{V}{1 + V}\right)$$
(7)

$$\theta|Y_{mis}, Y_{obs} \sim N(Y_{mis}, V).$$
 (8)

Bayesian Computation in Color-Magnitude Diagrams

Paul Baines

INTRO TO INTERWEAVING

From Yu & Meng (2009): Consider,

$$Y_{obs}|\theta, Y_{mis} \sim N(Y_{mis}, 1)$$
 (5)

$$Y_{mis}|\theta \sim N(\theta, V).$$
 (6)

イロト イポト イヨト イヨト

The standard Gibbs sampler iterates between:

$$Y_{mis}|\theta, Y_{obs} \sim N\left(\frac{\theta + VY_{obs}}{1 + V}, \frac{V}{1 + V}\right)$$
(7)
$$\theta|Y_{mis}, Y_{obs} \sim N(Y_{mis}, V).$$
(8)

It is easy to show that the geometric convergence rate for this scheme is 1/(1 + V) i.e., very slow for small V.

Bayesian Computation in Color-Magnitude Diagrams

Image: A match a ma

PROBLEMS WITH THE SA

By analogy, the very small variance among the stellar ages causes high autocorrelations across the draws and slow convergence.

This standard scheme is known as the **sufficent augmentation (SA)**, since Y_{mis} is a sufficient statistic for μ in the complete-data model.
Introduction	The Model	Fitting The Model	An Interweaving Strategy	Results	Conclusions

ANCILLARY AUGMENTATION

However, by letting $\tilde{Y}_{mis} = Y_{mis} - \theta$ the complete-data model becomes:

$$\begin{array}{lll} Y_{obs} | \tilde{Y}_{mis}, \theta & \sim & \mathcal{N}(\tilde{Y}_{mis} + \theta, 1), \\ \tilde{Y}_{mis} & \sim & \mathcal{N}(0, V). \end{array} \tag{9}$$

E

イロト イポト イヨト イヨト

Introduction The Model Fitting The Model An Interweaving Strategy Results Conclusions

ANCILLARY AUGMENTATION

However, by letting $\tilde{Y}_{mis} = Y_{mis} - \theta$ the complete-data model becomes:

$$Y_{obs}|\tilde{Y}_{mis}, \theta \sim N(\tilde{Y}_{mis}+\theta, 1),$$
 (9)

$$\tilde{Y}_{mis} \sim N(0, V).$$
 (10)

イロト イポト イヨト イヨト

The Gibbs sampler for this Ancillary Augmentation (AA) is:

$$\tilde{Y}_{mis}|\theta, Y_{obs} \sim N\left(\frac{V(Y_{obs}-\theta)}{1+V}, \frac{V}{1+V}\right) \quad (11)$$

$$\theta|\tilde{Y}_{mis}, Y_{obs} \sim N\left(Y_{obs}-\tilde{Y}_{mis}, 1\right), \quad (12)$$

with convergence rate 1/(1 + V) i.e., extremely fast for small V.

Bayesian Computation in Color-Magnitude Diagrams

In fact, Yu and Meng (2009) prove that by interweaving the two augmentations, it is possible to produce independent draws in the toy example, and speed up convergence in more general settings.

Image: A math a math

In fact, Yu and Meng (2009) prove that by interweaving the two augmentations, it is possible to produce independent draws in the toy example, and speed up convergence in more general settings.

The interweaving is done as follows:

• Draw Y_{mis} from the SA: $Y_{mis}^{(t+0.5)}|\theta^{(t)}, Y_{obs}$.

イロト イポト イヨト イ

In fact, Yu and Meng (2009) prove that by interweaving the two augmentations, it is possible to produce independent draws in the toy example, and speed up convergence in more general settings.

The interweaving is done as follows:

• Draw Y_{mis} from the SA: $Y_{mis}^{(t+0.5)}|\theta^{(t)}, Y_{obs}$.

• Compute
$$\tilde{Y}_{mis}^{(t+0.5)} = H(Y_{mis}^{(t+0.5)}; \theta^{(t)}).$$

イロト イポト イヨト イ

In fact, Yu and Meng (2009) prove that by interweaving the two augmentations, it is possible to produce independent draws in the toy example, and speed up convergence in more general settings.

The interweaving is done as follows:

- Draw Y_{mis} from the SA: $Y_{mis}^{(t+0.5)}|\theta^{(t)}, Y_{obs}$.
- Compute $\tilde{Y}_{mis}^{(t+0.5)} = H(Y_{mis}^{(t+0.5)}; \theta^{(t)}).$
- Draw θ from the AA: $\theta^{(t+0.5)} | \tilde{Y}_{mis}^{(t+0.5)}, Y_{obs}$.

イロト イポト イヨト イヨト

In fact, Yu and Meng (2009) prove that by interweaving the two augmentations, it is possible to produce independent draws in the toy example, and speed up convergence in more general settings.

The interweaving is done as follows:

- Draw Y_{mis} from the SA: $Y_{mis}^{(t+0.5)}|\theta^{(t)}, Y_{obs}$.
- Compute $\tilde{Y}_{mis}^{(t+0.5)} = H(Y_{mis}^{(t+0.5)}; \theta^{(t)}).$
- Draw θ from the AA: $\theta^{(t+0.5)} | \tilde{Y}_{mis}^{(t+0.5)}, Y_{obs}$.
- Compute $Y_{mis}^{(t+1)} = H^{-1}(\tilde{Y}_{mis}^{(t+0.5)}; \theta^{(t+0.5)}).$

イロト イポト イヨト イヨト

Bayesian Computation in Color-Magnitude Diagrams

Paul Baines

In fact, Yu and Meng (2009) prove that by interweaving the two augmentations, it is possible to produce independent draws in the toy example, and speed up convergence in more general settings.

The interweaving is done as follows:

- Draw Y_{mis} from the SA: $Y_{mis}^{(t+0.5)}|\theta^{(t)}, Y_{obs}$.
- Compute $\tilde{Y}_{mis}^{(t+0.5)} = H(Y_{mis}^{(t+0.5)}; \theta^{(t)}).$
- Draw θ from the AA: $\theta^{(t+0.5)} | \tilde{Y}_{mis}^{(t+0.5)}, Y_{obs}$.
- Compute $Y_{mis}^{(t+1)} = H^{-1}(\tilde{Y}_{mis}^{(t+0.5)}; \theta^{(t+0.5)}).$
- Draw θ from the SA: $\theta^{(t+1)}|Y_{mis}^{(t+1)}, Y_{obs}$.

イロト イポト イヨト イヨト

ASIS SAMPLER

The Gibbs sampler forms a conditional SA, and it can be shown that:

$$\tilde{A}_{i} = \Phi\left(\frac{A_{i} - \mu_{A}}{\sigma_{A}}\right), \quad \tilde{M}_{i} = \frac{M_{min}^{-(\alpha-1)} - M_{i}^{-(\alpha-1)}}{M_{min}^{-(\alpha-1)} - M_{max}(A_{i})^{-(\alpha-1)}}, \quad (13)$$

forms an AA:

・ロト ・聞ト ・ヨト ・ヨト

ASIS SAMPLER

The Gibbs sampler forms a conditional SA, and it can be shown that:

$$\tilde{A}_{i} = \Phi\left(\frac{A_{i} - \mu_{A}}{\sigma_{A}}\right), \quad \tilde{M}_{i} = \frac{M_{min}^{-(\alpha-1)} - M_{i}^{-(\alpha-1)}}{M_{min}^{-(\alpha-1)} - M_{max}(A_{i})^{-(\alpha-1)}}, \quad (13)$$

forms an AA:

$$\begin{split} Y_{i} | \tilde{\mathbf{M}}, \tilde{\mathbf{A}}, \mathbf{R}, \mu_{A}, \sigma_{A}^{2} \sim \mathcal{N} \left(f(\mathcal{M}_{i}, \tilde{\mathcal{A}}_{i}; \mu_{A}, \sigma_{A}), \mathcal{A}_{i}(\tilde{\mathcal{M}}_{i}, \tilde{\mathcal{A}}_{i}; \mu_{A}, \sigma_{A}), Z), \mathbf{R} \right) \\ \tilde{\mathcal{A}}_{i} | \mu_{A}, \sigma_{A}^{2} \sim \mathcal{N} \left[0, 1 \right], \qquad \tilde{\mathcal{M}}_{i} | \tilde{\mathcal{A}}_{i}, \mu_{A}, \sigma_{A}^{2} \sim \mathcal{U} \left[0, 1 \right] \\ \mu_{A} | \sigma_{A}^{2} \sim \mathcal{N} \left(\mu_{0}, \frac{\sigma_{A}^{2}}{\kappa_{0}} \right), \qquad \sigma_{A}^{2} \sim \operatorname{Inv-} \chi^{2} \left(\nu_{0}, \sigma_{0}^{2} \right). \end{split}$$

イロト イポト イヨト イヨト

101909

Paul Baines

Bayesian Computation in Color-Magnitude Diagrams

Posterior distribution

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣へで

Prior distribution

age.grid

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … 釣�?

Likelihood Surface

age.grid

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Transformation: SA->AA (transition)

・ロト ・西ト ・ヨト ・

E

500

Posterior in AA-parametrization

Introduction The Model Fitting The Model An Interweaving Strategy Results Conclusions

AN ASIS FOR THE CMD PROBLEM

- 1. Draw $(\mathbf{M}^{(t+0.5)}, \mathbf{A}^{(t+0.5)})$ from SA: $\mathbf{M}, \mathbf{A} | \mathbf{Y}, \mu_A^{(t)}, \sigma_A^{(t)}, \delta^{(t)}$.
- 2. Compute: $(\tilde{\mathbf{M}}^{(t+0.5)}, \tilde{\mathbf{A}}^{(t+0.5)}) = H(\mathbf{M}^{(t+0.5)}, \mathbf{A}^{(t+0.5)}; \mu_A^{(t)}, \sigma_A^{(t)}).$ 3. Draw $(\mu_A^{(t+0.5)}, \sigma_A^{(t+0.5)})$ from AA: $\mu_A, \sigma_A^2 | \mathbf{Y}, \tilde{\mathbf{M}}^{(t+0.5)}, \tilde{\mathbf{A}}^{(t+0.5)}, \delta^{(t)}.$
- 4. Compute: $(\mathbf{M}^{(t+1)}, \mathbf{A}^{(t+1)}) = H(\tilde{\mathbf{M}}^{(t+0.5)}, \tilde{\mathbf{A}}^{(t+0.5)}; \mu_A^{(t+0.5)}, \sigma_A^{(t+0.5)}).$ 5. Redraw $(\mu_A^{(t+1)}, \sigma_A^{(t+1)})$ from SA:
- 5. Redraw $(\mu_A^2, \sigma_A^2, \sigma_A^2)$ from SA: $\mu_A, \sigma_A^2 | \mathbf{Y}, \mathbf{M}^{(t+1)}, \mathbf{A}^{(t+1)}, \delta^{(t)}.$

<ロト

Bayesian Computation in Color-Magnitude Diagrams

Paul Baines

BEAUTY AND THE BEAST

The conditional posterior for (mu_a, σ_a^2) under the AA scheme is given by:

$$p(\mu_A, \sigma_A^2 | \tilde{\mathbf{M}}, \tilde{\mathbf{A}}, \mathbf{R}, \mathbf{Y}, \phi) \propto \det(\mathbf{R})^{-n/2} \exp\left\{-\frac{1}{2} \left[\frac{\kappa_0}{\sigma_A^2} (\mu_A - \mu_0)^2 + \operatorname{tr}\left(\mathbf{R}^{-1}\mathbf{F}\right)\right]\right\} p(\mu_a, \sigma_a^2)$$

イロト イポト イヨト イヨト

BEAUTY AND THE BEAST

The conditional posterior for (mu_a, σ_a^2) under the AA scheme is given by:

$$p(\mu_A, \sigma_A^2 | \tilde{\mathbf{M}}, \tilde{\mathbf{A}}, \mathbf{R}, \mathbf{Y}, \phi) \propto \det(\mathbf{R})^{-n/2} \exp\left\{-\frac{1}{2} \left[\frac{\kappa_0}{\sigma_A^2} (\mu_A - \mu_0)^2 + \operatorname{tr}\left(\mathbf{R}^{-1}\mathbf{F}\right)\right]\right\} p(\mu_a, \sigma_a^2)$$

Shifting (μ_a, σ_a^2) and mapping back to the AA will shift every single mass and age, but at a price...

イロト イポト イヨト イヨト

FIGURE: Full conditional log-posterior for μ_a in the AA-sampler.

(日)、

9 Q (?

E

≣ →

FIGURE: Full conditional log-posterior for μ_a in the AA-sampler.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

SAMPLING (M,A)

Sampling individual masses and ages is itself a complicated task, given the irregular and non-linear nature of the isochrone tables.

We construct an efficient, energy-based proposal distribution, in the spirit of Equi-Energy sampling (Kou, Zhou and Wong, 2006).

The entire scheme is then embedded within a Parallel Tempering framework (Geyer, 1991).

イロト イポト イヨト イヨ

х

х

х

х

Ingredients:

・ロト ・聞ト ・ヨト ・ヨト

101909

Bayesian Computation in Color-Magnitude Diagrams

Paul Baines

Ingredients:

(1) Energy function:
$$h(x) \propto -\log \pi(x)$$
 (i.e. $T = 1$)

Ingredients:

- (1) Energy function: $h(x) \propto -\log \pi(x)$ (i.e. T = 1)
- (2) Temperature levels:

$$1 = T_0 < T_1 < \cdots < T_K$$

イロト イヨト イヨト イヨト

Ingredients:

- (1) Energy function: $h(x) \propto -\log \pi(x)$ (i.e. T = 1)
- (2) **Temperature levels**:

$$1 = T_0 < T_1 < \cdots < T_K$$

(3) Tempered Targets:

 $\pi_i(x) \propto \exp\left\{-h(x)/T_i\right\}$

イロト イポト イヨト イヨト

101909

Paul Baines Bayesian Computation in Color-Magnitude Diagrams

Ingredients:

- (1) Energy function: $h(x) \propto -\log \pi(x)$ (i.e. T = 1)
- (2) **Temperature levels**:

$$1 = T_0 < T_1 < \cdots < T_K$$

(3) Tempered Targets:

$$\pi_i(x) \propto \exp\left\{-h(x)/T_i\right\}$$

(4) Hotter chains are easier to sample from (flatter), allow for a filtering of states from higher to lower temperatures (random exchange) to avoid local modes etc.

イロト イポト イヨト イヨト

Ingredients:

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト → 臣 → のへ()

101909

Paul Baines Bayesian Computation in Color-Magnitude Diagrams

Ingredients:

(1) Energy function:
$$h(x) \propto -\log \pi(x)$$
 (i.e. $T = 1$)

Ingredients:

- (1) Energy function: $h(x) \propto -\log \pi(x)$ (i.e. T = 1)
- (2) **Temperature levels**:

$$1 = T_0 < T_1 < \cdots < T_K$$

◆ロト ◆聞ト ◆国ト ◆国ト

Ingredients:

- (1) Energy function: $h(x) \propto -\log \pi(x)$ (i.e. T = 1)
- (2) **Temperature levels**:

$$1 = T_0 < T_1 < \cdots < T_K$$

(3) Energy levels:

$$H_0 \leq \inf_{x} \{h(x)\} < H_1 < H_2 < \cdots < H_K < H_{K+1} = \infty$$

Paul Baines Bayesian Computation in Color-Magnitude Diagrams ◆ロト ◆聞ト ◆国ト ◆国ト

Ingredients:

- (1) Energy function: $h(x) \propto -\log \pi(x)$ (i.e. T = 1)
- (2) Temperature levels:

$$1 = T_0 < T_1 < \cdots < T_K$$

(3) Energy levels:

$$H_0 \leq \inf_{x} \{h(x)\} < H_1 < H_2 < \cdots < H_K < H_{K+1} = \infty$$

(4) Per-level energy functions:

$$h_i(x) = \frac{1}{T_i} \max\{h(x), H_i\} \quad \text{i.e.} \quad \pi_i(x) \propto \begin{cases} e^{-h(x)/T_i} & \text{if } h(x) > H_i \\ e^{-H_i/T_i} & \text{if } h(x) \le H_i \end{cases}$$

◆ロト ◆聞ト ◆国ト ◆国ト

101909

Paul Baines

Bayesian Computation in Color-Magnitude Diagrams

FIGURE: The equi-energy jump

990
ENERGY LEVELS: A CLOSER LOOK

For those who are unfamiliar with temperature-scaling it may be helpful to look at exactly what we have in the familiar setting:

ENERGY LEVELS: A CLOSER LOOK

For those who are unfamiliar with temperature-scaling it may be helpful to look at exactly what we have in the familiar setting:

$$\pi_i(x) = \begin{cases} (\pi(x))^{1/T_i} & \text{if } \pi(x) > e^{-H_i} \\ \text{constant} & \text{if } \pi(x) \le e^{-H_i} \end{cases}$$

ENERGY LEVELS: A CLOSER LOOK

For those who are unfamiliar with temperature-scaling it may be helpful to look at exactly what we have in the familiar setting:

$$\pi_i(x) = \begin{cases} (\pi(x))^{1/T_i} & \text{if } \pi(x) > e^{-H_i} \\ \text{constant} & \text{if } \pi(x) \le e^{-H_i} \end{cases}$$

So the *ith*-level target densities are (lower-)truncated and flattened versions of the original density

AN EXAMPLE

Mixture t-normal

х

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣へで

TEMPERATURE EFFECT

h_{i}(x): c=0.1, T varying

х

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣べで

TRUNCATION EFFECT

h_{i}(x): T=1, c varying

х

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣べで

The Details

$$I(x) = j$$
 if $h(x) \in [H_j, H_{j+1})$ (i.e. $\pi(x) \in [e^{-H_j}, e^{-H_{j+1}})$)

.

イロト イヨト イヨト イヨト

Paul Baines Bayesian Computation in Color-Magnitude Diagrams

The driving force of the posterior in the ancillary augmentation is the likelihood, as determined primarily by the isochrone tables.

▶ EE constructs energy bins in joint space...

▲ @ ▶ ▲ ≥ ▶

The driving force of the posterior in the ancillary augmentation is the likelihood, as determined primarily by the isochrone tables.

► EE constructs energy bins in joint space... here 2n + 2 + p(p - 1)/2

The driving force of the posterior in the ancillary augmentation is the likelihood, as determined primarily by the isochrone tables.

► EE constructs energy bins in joint space... here 2n + 2 + p(p - 1)/2 ☺

The driving force of the posterior in the ancillary augmentation is the likelihood, as determined primarily by the isochrone tables.

- ► EE constructs energy bins in joint space... here 2n + 2 + p(p - 1)/2 ☺
- ► For Gibbs step drawing (M_i, A_i), we can utilize the common structure of the isochrone tables
- We have a map ahead of time of which parameter combinations map to 'similar' regions of the observation space
- Construct 'energy-based' proposal based on this
- Partition parameter space into 'boxes' and characterize distance between boxes...

Delaunay triangulation

tri.mesh(rpois(100, lambda = 20), rpois(100, lambda = 20), duplicate = "remove")

990

FIGURE: Example of Delaunay Triangulation

Delaunay triangulation

FIGURE: Delaunay Triangulation of (M, A)

(□) (@) (E) (E) (E)

 $\ensuremath{\mathbf{Figure:}}$ Close up view of the partition

< □ > < □ > < □ > < □ > < □ > < □ >

臣

PARSIMONIOUS REPRESENTATION

Storging a 'box-to-box' proposal weight matrix is a little cumbersome as the number of boxes is relatively large (\approx 193,000).

Instead we cluster the boxes into 'clusters' of boxes that are 'close' in color/magnitude space, then propose (uniformly) within the clusters, and store a much smaller cluster-to-cluster proposal.

Posterior distribution

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣べで

Likelihood Surface

age.grid

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三百 - のへで

Transformation: SA->AA (transition)

・ロト ・西ト ・ヨト ・

E

Posterior in AA-parametrization

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … 釣�?

Proposal distribution in AA-parametrization

臣 500

IMPLEMENTATION

The goal was a general purpose methodology for CMD-esque analysis, for which we have developed (and are developing) an R package cmd, complete with other computational and graphical tools for CMD-analysis.

The algorithm is implemented in C, and can effectively datasets up to $\approx 2,000,000$ observations.

The package can be run in standard form or, for more intensive analyses, a multi-threaded implementation is available for parallel computation.

Python front end expected in the future...

Introduction	The Model	Fitting The Model	An Interweaving Strategy	Results	Conclusions
RESULT	S				

Simulating from the model and fitting, we check the sampling scheme validates (on average)...

RESULTS

Simulating from the model and fitting, we check the sampling scheme validates (on average)...

VALIDATION RECIPE (AGGREGATE)

- 1. Simulate parameters from the prior distribution, M times,
- 2. For each parameter combination, simulate a dataset conditional on these,
- 3. Compute the posterior interval(s) for each of these datasets,
- 4. Compute whether or not each interval covers the truth.

Coverage rates of 95% *interval (etc) should agree with nominal level.*

三 つへで

FIGURE: Convergence plots for sampler with Parallel Tempering

ss_age: Posterior medians vs. Truth

< □ > < □ > < □ > < □ > < □ > < □ >

E

FIGURE: Convergence plots for sampler with box-and-cluster proposal in the ancillary augmentation

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

COVERAGE TABLE

	1%	2.5%	5%	25%	50%	75%	95%	97.5%	99%
m₋i	0.7	2.1	4.4	24.6	49.3	74.6	94.5	97.2	99.2
a₋i	1.1	2.8	5.0	25.1	49.1	74.5	94.8	97.6	99.0
mu_a	0.7	1.9	4.0	24.9	48.2	74.8	94.6	97.4	99.1
sigmasq_a	0.7	1.6	3.2	23.7	48.3	75.0	95.3	97.3	99.3

TABLE: Coverage table for the standard SA+AA box+cluster sampler with Geneva isochrones.

SUMMARY

- Use a flexible hierarchical Bayesian model to make inference about properties of stellar clusters
- The complex 'black-box' nature of the lookup table presents computation challenges
- By interweaving two complementary parametrizations we can gain relative to each individual scheme
- Distinction between inferential and computational parametrizations
- Combination of several heavy-hitting MCMC techinques allows us to effectively sample from the posterior for wide range of lookup tables

References

Acknowledgments

- Kou, S.C., Zhou, Q., Wong, W.H., (2006) Equi-Energy Sampler with applications in statistical inference and statistical mechanics. *The Annals of Statistics*, **34**-4, pp.1581-1619
- 2. Geyer, C.J. (1991) Markov chain Monte Carlo maximum likelihood. *Computing Science and Statistics Proceedings of the 23rd Symposium on the Interface*, p. 156-163.
- Baines, P.D., Meng, X.-L., Zezas, A., Kashyap, V.K., Lee, H. (2009) Bayesian Analysis of Color-Magnitude Diagrams (in progress)
- 4. Yu, Y., Meng, X.-L. (2009) To Center or Not To Center: That Is Not The Question, (in progress)

Paul Baines