BaYESIAN COMPUTATION IN Color-Magnitude Diagrams SA, AA, PT, EE, MCMC and ASIS in CMDs

Paul Baines

Department of Statistics
Harvard University

October 19, 2009

Overview

- Motivation and Introduction
- Modelling Color-Magnitude Diagrams
- Bayesian Statistical Computation
- Acronyms in SC: MH, ASIS, EE, PT

Stellar Populations

We want to study stars, or 'clusters' of stars, and are interested in their mass and age, and sometimes their metallicity.

Stellar Populations

We want to study stars, or 'clusters' of stars, and are interested in their mass and age, and sometimes their metallicity.

The way this is usually done is by:
I Taking photometric observations of the stars in a number of different wavelengths,
II Compare observed values with what the theory predicts, and,
III Select mass, age and metallicity to minimize the χ^{2} statistic.

Stellar Populations

We want to study stars, or 'clusters' of stars, and are interested in their mass and age, and sometimes their metallicity.

The way this is usually done is by:
I Taking photometric observations of the stars in a number of different wavelengths,
II Compare observed values with what the theory predicts, and,
iII Select mass, age and metallicity to minimize the χ^{2} statistic. ... doesn't utilize any knowledge of underlying structure, propagation of error, hard to extend coherently...

Isochrones: Metallicity = 4

Isochrones: Metallicity = 4

NGC 104 （47 Tuc）

Hyunsook Lee，Harvard Smithsonian Center for Astrophysics

Gaussian Errors

The observed magnitudes in different bands would ideally match the theoretical isochrone values, but there is both (i) measurement error, and, (ii) natural variability (photon arrivals).

The uncertainty at this stage is treated as Gaussian, although these can be correlated across bands.

Gaussian Errors

The observed magnitudes in different bands would ideally match the theoretical isochrone values, but there is both (i) measurement error, and, (ii) natural variability (photon arrivals).

The uncertainty at this stage is treated as Gaussian, although these can be correlated across bands.
(Mechanically unimportant)

The Likelihood

Assuming gaussian errors with common correlation matrix:

$$
\begin{equation*}
y_{i} \mid A_{i}, M_{i}, Z \sim N\left(\tilde{f}_{i}, \mathbf{R}\right) \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

Where,

$$
y_{i}=\left(\begin{array}{c}
\frac{1}{\sigma_{i}^{(B)}} B_{i} \\
\frac{\sigma_{1}^{(V)}}{\sigma_{i}^{(V)}} V_{i} \\
\frac{1}{\sigma_{i}^{(I)}} l_{i}
\end{array}\right), \tilde{f}_{i}=\left(\begin{array}{c}
\frac{1}{\sigma_{\beta_{i}}} \cdot f_{b}\left(M_{i}, A_{i}, Z\right) \\
\frac{\beta}{\sigma_{Y_{i}}} \cdot f_{V}\left(M_{i}, A_{i}, Z\right) \\
\frac{Y}{\sigma_{i}} \cdot f_{i}\left(M_{i}, A_{i}, Z\right)
\end{array}\right), \mathbf{R}=\left(\begin{array}{ccc}
1 & \rho^{(B V)} & \rho^{(B I)} \\
\rho^{(B V)} & 1 & \rho^{(V I)} \\
\rho^{(B I)} & \rho^{(V I)} & 1
\end{array}\right)
$$

The Likelihood

Assuming gaussian errors with common correlation matrix:

$$
\begin{equation*}
y_{i} \mid A_{i}, M_{i}, Z \sim N\left(\tilde{f}_{i}, \mathbf{R}\right) \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

Where,
$y_{i}=\left(\begin{array}{c}\frac{1}{\sigma_{i}^{(B)}} B_{i} \\ \frac{1}{\sigma_{i}^{(V)}} V_{i} \\ \frac{1}{\sigma_{i}^{(I)}} l_{i}\end{array}\right), \tilde{f}_{i}=\left(\begin{array}{c}\frac{1}{\sigma_{\beta i}} \cdot f_{b}\left(M_{i}, A_{i}, Z\right) \\ \frac{\beta}{\sigma_{\gamma_{i}}} \cdot f_{v}\left(M_{i}, A_{i}, Z\right) \\ \frac{Y_{i}}{\sigma_{i}} \cdot f_{i}\left(M_{i}, A_{i}, Z\right)\end{array}\right), \mathbf{R}=\left(\begin{array}{ccc}1 & \rho^{(B V)} & \rho^{(B I)} \\ \rho^{(B V)} & 1 & \rho^{(V I)} \\ \rho^{(B I)} & \rho^{(V I)} & 1\end{array}\right)$
Now, we assume a hierarchical Bayesian model on the mass, age, and metallicities.

Isochrone table layout
(support)

Joint Distribution of Mass and Age

Even before we observe any data, we know that the distributions of stellar mass and age are not independent. We know a priori that, (for a star to be in the population of all possibly observable stars), old stars cannot have large mass, likewise for very young stars. Hence, we specify the prior on mass conditional on age:

$$
\begin{equation*}
p\left(M_{i} \mid A_{i}, M_{\min }, M_{\max }\left(A_{i}\right), \alpha\right) \propto \frac{1}{M_{i}^{\alpha}} \cdot \mathbf{1}_{\left\{M_{i} \in\left[M_{\min }, M_{\max }\left(A_{i}\right)\right]\right\}} \tag{2}
\end{equation*}
$$

i.e. $M_{i} \mid A_{i}, M_{\min }, M_{\max }\left(A_{i}\right), \alpha \sim$ Truncated-Pareto.

Age

For age we assume the following hierarchical structure:

$$
\begin{equation*}
A_{i} \mid \mu_{A}, \sigma_{A}^{2} \stackrel{i i d}{\sim} N\left(\mu_{A}, \sigma_{A}^{2}\right) \tag{3}
\end{equation*}
$$

where $A_{i}=\log _{10}$ (Age), with μ_{A} and σ_{A}^{2} hyperparameters...

Age

For age we assume the following hierarchical structure:

$$
\begin{equation*}
A_{i} \mid \mu_{A}, \sigma_{A}^{2} \stackrel{i i d}{\sim} N\left(\mu_{A}, \sigma_{A}^{2}\right) \tag{3}
\end{equation*}
$$

where $A_{i}=\log _{10}$ (Age), with μ_{A} and σ_{A}^{2} hyperparameters...
Idea: Allow greater flexibility/reduce dimensionality, investigate strength of assumptions, capture underlying structure, correlation etc

Hyperparameters

Next, we model the hyperparameters with the simple conjugate form:

$$
\begin{equation*}
\mu_{A} \left\lvert\, \sigma_{A}^{2} \sim N\left(\mu_{0}, \frac{\sigma_{A}^{2}}{\kappa_{0}}\right)\right., \quad \sigma_{A}^{2} \sim \operatorname{In} v-\chi^{2}\left(\nu_{0}, \sigma_{0}^{2}\right) \tag{4}
\end{equation*}
$$

Where $\mu_{0}, \kappa_{0}, \nu_{0}$ and σ_{0}^{2} are fixed by the user to represent prior knowledge (or lack of).

Sensitivity (or robustness) to the prior is of great interest.

Correlation

We assume a uniform prior over the space of positive definite correlation matrices.

This isn't quite uniform on each of $\rho^{(B V)}, \rho^{(B I)}$ and $\rho^{(V I)}$, but it is close for low dimensions.

Putting it all together

$$
\left.y_{i}=\left(\begin{array}{c}
\frac{1}{\sigma_{i}^{(B)}} B_{i} \\
\frac{1}{\sigma_{i}^{(V)}} V_{i} \\
\frac{1}{\sigma_{i}^{(l)}} l_{i}
\end{array}\right) \right\rvert\, A_{i}, M_{i}, Z \sim N\left(\tilde{f}_{i}, \mathbf{R}\right) \quad i=1, \ldots, n .
$$

$M_{i} \mid A_{i}, M_{\text {min }}, \alpha \sim$ Truncated-Pareto $\left(\alpha-1, M_{\min }, M_{\max }\left(A_{i}\right)\right)$

$$
\begin{gathered}
A_{i} \mid \mu_{A}, \sigma_{A}^{2} \stackrel{i i d}{\sim} N\left(\mu_{A}, \sigma_{A}^{2}\right) \\
\mu_{A} \left\lvert\, \sigma_{A}^{2} \sim N\left(\mu_{0}, \frac{\sigma_{A}^{2}}{\kappa_{0}}\right)\right., \quad \sigma_{A}^{2} \sim \operatorname{Inv}-\chi^{2}\left(\nu_{0}, \sigma_{0}^{2}\right) \\
p(\mathbf{R}) \propto \mathbf{1}_{\{\mathbf{R} p . d .\}}
\end{gathered}
$$

MCMC Toolbox

(Almost) everything must use a Gibbs sampler (or conditional maximization) if it has lots of parameters. Gibbs is great but its failings are well documented. Three top-of-the-range tools for building your MCMC scheme:

MCMC Toolbox

(Almost) everything must use a Gibbs sampler (or conditional maximization) if it has lots of parameters. Gibbs is great but its failings are well documented. Three top-of-the-range tools for building your MCMC scheme:

1. Parallel Tempering (Geyer, 1991)

MCMC Toolbox

(Almost) everything must use a Gibbs sampler (or conditional maximization) if it has lots of parameters. Gibbs is great but its failings are well documented. Three top-of-the-range tools for building your MCMC scheme:

1. Parallel Tempering (Geyer, 1991)
2. Equi-Energy Sampling (Kou, Zhou \& Wong, 2006)

MCMC Toolbox

(Almost) everything must use a Gibbs sampler (or conditional maximization) if it has lots of parameters. Gibbs is great but its failings are well documented. Three top-of-the-range tools for building your MCMC scheme:

1. Parallel Tempering (Geyer, 1991)
2. Equi-Energy Sampling (Kou, Zhou \& Wong, 2006)
3. Ancillarity-Sufficiency Interweaving (ASIS) (Yu \& Meng, 2009)

MCMC Toolbox

(Almost) everything must use a Gibbs sampler (or conditional maximization) if it has lots of parameters. Gibbs is great but its failings are well documented. Three top-of-the-range tools for building your MCMC scheme:

1. Parallel Tempering (Geyer, 1991)
2. Equi-Energy Sampling (Kou, Zhou \& Wong, 2006)
3. Ancillarity-Sufficiency Interweaving (ASIS) (Yu \& Meng, 2009)

We now take a 'hands on' look at these in developing a robust algorithm for analysis Color-Magnitude data.

Default MCMC

Algorithm

$$
\text { Let } \Theta^{(t)}=\left\{\left(M_{i}^{(t)}, A_{i}^{(t)}\right): i=1, \ldots, n\right\} .
$$

0 . Set $t=0$. Choose starting states $\Theta^{(0)}, \mu_{a}^{(0)}, \sigma_{a}^{(0)}$.

1. Draw $\Theta^{(t+1)}$ from $\left\{M_{i}, A_{i}\right\}_{i=1, \ldots, n} \mid \mu_{a}^{(t)}, \sigma_{a}^{(t)}, \mathbf{Y}$.
2. $\operatorname{Draw} \mu_{a}^{(t+1)}, \sigma_{a}^{(t+1)}$ from $\mu_{a}, \sigma_{a} \mid \Theta^{(t+1)}, \mathbf{Y}$.
3. Increment $t \mapsto t+1$, return to 1 .

Default MCMC

Algorithm

$$
\text { Let } \Theta^{(t)}=\left\{\left(M_{i}^{(t)}, A_{i}^{(t)}\right): i=1, \ldots, n\right\} .
$$

0 . Set $t=0$. Choose starting states $\Theta^{(0)}, \mu_{a}^{(0)}, \sigma_{a}^{(0)}$.

1. $\operatorname{Draw} \Theta^{(t+1)}$ from $\left\{M_{i}, A_{i}\right\}_{i=1, \ldots, n} \mid \mu_{a}^{(t)}, \sigma_{a}^{(t)}, \mathbf{Y}$.
2. Draw $\mu_{a}^{(t+1)}, \sigma_{a}^{(t+1)}$ from $\mu_{a}, \sigma_{a} \mid \Theta^{(t+1)}, \mathbf{Y}$.
3. Increment $t \mapsto t+1$, return to 1 .

The samples $\left(\Theta^{(t)}, \mu_{a}^{(t)}, \sigma_{a}^{(t)}\right)$, for $t=B+1, \ldots, B+N$ form a sample from the target distribution (approximately)...

Trace of $\mathbf{m} \mathbf{0}$

Trace of a_0

Trace of mu_age

Trace of ss_age

Density of m_0
~

Density of a_0

Density of mu_age

Density of ss_age

$\mathrm{N}=1000$ Bandwidth $=1.665 \mathrm{e}-07$

Actual vs. Nominal Coverage

mu_age: Posterior medians vs. Truth

	1%	2.5%	5%	25%	50%	75%	95%	97.5%	99%
m_{i}	1.0	2.5	4.9	26.4	51.1	76.2	95.0	97.5	98.8
a_{i}	0.5	1.5	3.4	15.4	30.8	46.4	61.1	63.5	64.9
μ_{a}	0.4	1.3	2.4	14.9	31.8	49.2	62.1	63.5	64.1
σ_{a}^{2}	17.6	22.6	27.7	48.6	68.3	85.1	97.5	98.9	99.6

TABLE: Coverage table for the standard SA sampler and synthetic isochrones

MCMC: Effective Sample Sizes

Figure: Convergence plots for standard sampler (synthetic isochrones)

Intro to Interweaving

From Yu \& Meng (2009): Consider,

$$
\begin{align*}
Y_{o b s} \mid \theta, Y_{\text {mis }} & \sim N\left(Y_{\text {mis }}, 1\right) \tag{5}\\
Y_{m i s} \mid \theta & \sim N(\theta, V) . \tag{6}
\end{align*}
$$

Intro to Interweaving

From Yu \& Meng (2009): Consider,

$$
\begin{align*}
Y_{o b s} \mid \theta, Y_{m i s} & \sim N\left(Y_{m i s}, 1\right) \tag{5}\\
Y_{m i s} \mid \theta & \sim N(\theta, V) \tag{6}
\end{align*}
$$

The standard Gibbs sampler iterates between:

$$
\begin{align*}
Y_{m i s} \mid \theta, Y_{o b s} & \sim N\left(\frac{\theta+V Y_{o b s}}{1+V}, \frac{V}{1+V}\right) \tag{7}\\
\theta \mid Y_{m i s}, Y_{o b s} & \sim N\left(Y_{m i s}, V\right) \tag{8}
\end{align*}
$$

Intro to Interweaving

From Yu \& Meng (2009): Consider,

$$
\begin{align*}
Y_{o b s} \mid \theta, Y_{\text {mis }} & \sim N\left(Y_{m i s}, 1\right) \tag{5}\\
Y_{m i s} \mid \theta & \sim N(\theta, V) \tag{6}
\end{align*}
$$

The standard Gibbs sampler iterates between:

$$
\begin{align*}
Y_{m i s} \mid \theta, Y_{o b s} & \sim N\left(\frac{\theta+V Y_{o b s}}{1+V}, \frac{V}{1+V}\right) \tag{7}\\
\theta \mid Y_{m i s}, Y_{o b s} & \sim N\left(Y_{m i s}, V\right) \tag{8}
\end{align*}
$$

It is easy to show that the geometric convergence rate for this scheme is $1 /(1+V)$ i.e., very slow for small V.

Problems with the SA

By analogy, the very small variance among the stellar ages causes high autocorrelations across the draws and slow convergence.

This standard scheme is known as the sufficent augmentation (SA), since $Y_{\text {mis }}$ is a sufficient statistic for μ in the complete-data model.

Ancillary Augmentation

However, by letting $\tilde{Y}_{\text {mis }}=Y_{\text {mis }}-\theta$ the complete-data model becomes:

$$
\begin{align*}
Y_{\text {obs }} \mid \tilde{Y}_{\text {mis }}, \theta & \sim N\left(\tilde{Y}_{\text {mis }}+\theta, 1\right), \tag{9}\\
\tilde{Y}_{\text {mis }} & \sim N(0, V) . \tag{10}
\end{align*}
$$

Ancillary Augmentation

However, by letting $\tilde{Y}_{\text {mis }}=Y_{\text {mis }}-\theta$ the complete-data model becomes:

$$
\begin{align*}
Y_{o b s} \mid \tilde{Y}_{m i s}, \theta & \sim N\left(\tilde{Y}_{m i s}+\theta, 1\right) \tag{9}\\
\tilde{Y}_{m i s} & \sim N(0, V) \tag{10}
\end{align*}
$$

The Gibbs sampler for this Ancillary Augmentation (AA) is:

$$
\begin{align*}
\tilde{Y}_{m i s} \mid \theta, Y_{o b s} & \sim N\left(\frac{V\left(Y_{o b s}-\theta\right)}{1+V}, \frac{V}{1+V}\right) \tag{11}\\
\theta \mid \tilde{Y}_{m i s}, Y_{o b s} & \sim N\left(Y_{o b s}-\tilde{Y}_{m i s}, 1\right) \tag{12}
\end{align*}
$$

with convergence rate $1 /(1+V)$ i.e., extremely fast for small V.

INTERWEAVING

In fact, Yu and Meng (2009) prove that by interweaving the two augmentations, it is possible to produce independent draws in the toy example, and speed up convergence in more general settings.

INTERWEAVING

In fact, Yu and Meng (2009) prove that by interweaving the two augmentations, it is possible to produce independent draws in the toy example, and speed up convergence in more general settings.

The interweaving is done as follows:

- Draw $Y_{\text {mis }}$ from the $\mathrm{SA}: Y_{\text {mis }}^{(t+0.5)} \mid \theta^{(t)}, Y_{o b s}$.

INTERWEAVING

In fact, Yu and Meng (2009) prove that by interweaving the two augmentations, it is possible to produce independent draws in the toy example, and speed up convergence in more general settings.

The interweaving is done as follows:

- Draw $Y_{\text {mis }}$ from the SA: $Y_{\text {mis }}^{(t+0.5)} \mid \theta^{(t)}, Y_{o b s}$.
- Compute $\tilde{Y}_{\text {mis }}^{(t+0.5)}=H\left(Y_{\text {mis }}^{(t+0.5)} ; \theta^{(t)}\right)$.

INTERWEAVING

In fact, Yu and Meng (2009) prove that by interweaving the two augmentations, it is possible to produce independent draws in the toy example, and speed up convergence in more general settings.

The interweaving is done as follows:

- Draw $Y_{\text {mis }}$ from the SA: $Y_{\text {mis }}^{(t+0.5)} \mid \theta^{(t)}, Y_{o b s}$.
- Compute $\tilde{Y}_{\text {mis }}^{(t+0.5)}=H\left(Y_{\text {mis }}^{(t+0.5)} ; \theta^{(t)}\right)$.
- Draw θ from the AA: $\theta^{(t+0.5)} \mid \tilde{Y}_{\text {mis }}^{(t+0.5)}, Y_{\text {obs }}$.

INTERWEAVING

In fact, Yu and Meng (2009) prove that by interweaving the two augmentations, it is possible to produce independent draws in the toy example, and speed up convergence in more general settings.

The interweaving is done as follows:

- Draw $Y_{\text {mis }}$ from the SA: $Y_{\text {mis }}^{(t+0.5)} \mid \theta^{(t)}, Y_{o b s}$.
- Compute $\tilde{Y}_{\text {mis }}^{(t+0.5)}=H\left(Y_{\text {mis }}^{(t+0.5)} ; \theta^{(t)}\right)$.
- Draw θ from the AA: $\theta^{(t+0.5)} \mid \tilde{Y}_{\text {mis }}^{(t+0.5)}, Y_{\text {obs }}$.
- Compute $Y_{\text {mis }}^{(t+1)}=H^{-1}\left(\tilde{Y}_{\text {mis }}^{(t+0.5)} ; \theta^{(t+0.5)}\right)$.

Interweaving

In fact, Yu and Meng (2009) prove that by interweaving the two augmentations, it is possible to produce independent draws in the toy example, and speed up convergence in more general settings.

The interweaving is done as follows:

- Draw $Y_{\text {mis }}$ from the SA: $Y_{\text {mis }}^{(t+0.5)} \mid \theta^{(t)}, Y_{o b s}$.
- Compute $\tilde{Y}_{\text {mis }}^{(t+0.5)}=H\left(Y_{\text {mis }}^{(t+0.5)} ; \theta^{(t)}\right)$.
- Draw θ from the AA: $\theta^{(t+0.5)} \mid \tilde{Y}_{\text {mis }}^{(t+0.5)}, Y_{\text {obs }}$.
- Compute $Y_{\text {mis }}^{(t+1)}=H^{-1}\left(\tilde{Y}_{\text {mis }}^{(t+0.5)} ; \theta^{(t+0.5)}\right)$.
- Draw θ from the SA: $\theta^{(t+1)} \mid Y_{\text {mis }}^{(t+1)}, Y_{o b s}$.

ASIS SAMPLER

The Gibbs sampler forms a conditional SA, and it can be shown that:

$$
\begin{equation*}
\tilde{A}_{i}=\Phi\left(\frac{A_{i}-\mu_{A}}{\sigma_{A}}\right), \quad \tilde{M}_{i}=\frac{M_{\min }^{-(\alpha-1)}-M_{i}^{-(\alpha-1)}}{M_{\min }^{-(\alpha-1)}-M_{\max }\left(A_{i}\right)^{-(\alpha-1)}}, \tag{13}
\end{equation*}
$$

forms an AA:

ASIS SAMPLER

The Gibbs sampler forms a conditional SA, and it can be shown that:

$$
\begin{equation*}
\tilde{A}_{i}=\Phi\left(\frac{A_{i}-\mu_{A}}{\sigma_{A}}\right), \quad \tilde{M}_{i}=\frac{M_{\min }^{-(\alpha-1)}-M_{i}^{-(\alpha-1)}}{M_{\min }^{-(\alpha-1)}-M_{\max }\left(A_{i}\right)^{-(\alpha-1)}}, \tag{13}
\end{equation*}
$$

forms an AA:

$$
\begin{gathered}
Y_{i} \mid \tilde{\mathbf{M}}, \tilde{\mathbf{A}}, \mathbf{R}, \mu_{A}, \sigma_{A}^{2} \sim N\left(f\left(M_{i}\left(\tilde{M}_{i}, \tilde{A}_{i} ; \mu_{A}, \sigma_{A}\right), A_{i}\left(\tilde{M}_{i}, \tilde{A}_{i} ; \mu_{A}, \sigma_{A}\right), Z\right), \mathbf{R}\right) \\
\tilde{A}_{i}\left|\mu_{A}, \sigma_{A}^{2} \sim N[0,1], \quad \tilde{M}_{i}\right| \tilde{A}_{i}, \mu_{A}, \sigma_{A}^{2} \sim U[0,1] \\
\mu_{A} \left\lvert\, \sigma_{A}^{2} \sim N\left(\mu_{0}, \frac{\sigma_{A}^{2}}{\kappa_{0}}\right)\right., \quad \sigma_{A}^{2} \sim \operatorname{Inv}-\chi^{2}\left(\nu_{0}, \sigma_{0}^{2}\right) .
\end{gathered}
$$

Posterior distribution

Prior distribution

Likelihood Surface

Transformation: SA->AA (transition)

Posterior in AA-parametrization

An ASIS for the CMD Problem

1. Draw $\left(\mathbf{M}^{(t+0.5)}, \mathbf{A}^{(t+0.5)}\right)$ from $\mathrm{SA}: \mathbf{M}, \mathbf{A} \mid \mathbf{Y}, \mu_{A}^{(t)}, \sigma_{A}^{(t)}, \delta^{(t)}$.
2. Compute:
$\left(\tilde{\mathbf{M}}^{(t+0.5)}, \tilde{\mathbf{A}}^{(t+0.5)}\right)=H\left(\mathbf{M}^{(t+0.5)}, \mathbf{A}^{(t+0.5)} ; \mu_{A}^{(t)}, \sigma_{A}^{(t)}\right)$.
3. Draw $\left(\mu_{A}^{(t+0.5)}, \sigma_{A}^{(t+0.5)}\right)$ from AA:

$$
\mu_{A}, \sigma_{A}^{2} \mid \mathbf{Y}, \tilde{\mathbf{M}}^{(t+0.5)}, \tilde{\mathbf{A}}^{(t+0.5)}, \delta^{(t)}
$$

4. Compute:

$$
\left(\mathbf{M}^{(t+1)}, \mathbf{A}^{(t+1)}\right)=H\left(\tilde{\mathbf{M}}^{(t+0.5)}, \tilde{\mathbf{A}}^{(t+0.5)} ; \mu_{A}^{(t+0.5)}, \sigma_{A}^{(t+0.5)}\right)
$$

5. Redraw $\left(\mu_{A}^{(t+1)}, \sigma_{A}^{(t+1)}\right)$ from SA:

$$
\mu_{A}, \sigma_{A}^{2} \mid \mathbf{Y}, \mathbf{M}^{(t+1)}, \mathbf{A}^{(t+1)}, \delta^{(t)}
$$

Beauty and The Beast

The conditional posterior for $\left(m u_{a}, \sigma_{a}^{2}\right)$ under the AA scheme is given by:
$\left.p\left(\mu_{A}, \sigma_{A}^{2} \mid \tilde{\mathbf{M}}, \tilde{\mathbf{A}}, \mathbf{R}, \mathbf{Y}, \phi\right) \propto \operatorname{det}(\mathbf{R})^{-n / 2} \exp \left\{-\frac{1}{2}\left[\frac{\kappa_{0}}{\sigma_{A}^{2}}\left(\mu_{A}-\mu_{0}\right)^{2}+\operatorname{tr}\left(\mathbf{R}^{-1} \mathbf{F}\right)\right]\right\}\right] p\left(\mu_{a}, \sigma_{a}^{2}\right)$

Beauty and The Beast

The conditional posterior for $\left(m u_{a}, \sigma_{a}^{2}\right)$ under the AA scheme is given by:
$\left.p\left(\mu_{A}, \sigma_{A}^{2} \mid \tilde{\mathbf{M}}, \tilde{\mathbf{A}}, \mathbf{R}, \mathbf{Y}, \phi\right) \propto \operatorname{det}(\mathbf{R})^{-n / 2} \exp \left\{-\frac{1}{2}\left[\frac{\kappa_{0}}{\sigma_{A}^{2}}\left(\mu_{A}-\mu_{0}\right)^{2}+\operatorname{tr}\left(\mathbf{R}^{-1} \mathbf{F}\right)\right]\right\}\right] p\left(\mu_{a}, \sigma_{a}^{2}\right)$
Shifting (μ_{a}, σ_{a}^{2}) and mapping back to the AA will shift every single mass and age, but at a price...

Figure: Full conditional log-posterior for μ_{a} in the AA-sampler.

Figure: Full conditional log-posterior for μ_{a} in the AA-sampler.

Sampling (M, A)

Sampling individual masses and ages is itself a complicated task, given the irregular and non-linear nature of the isochrone tables.

We construct an efficient, energy-based proposal distribution, in the spirit of Equi-Energy sampling (Kou, Zhou and Wong, 2006).

The entire scheme is then embedded within a Parallel Tempering framework (Geyer, 1991).

PT Example

PT Example

PT Example

PT Example

Parallel Tempering

Ingredients:

Parallel Tempering

Ingredients:
(1) Energy function: $h(x) \propto-\log \pi(x)$ (i.e. $T=1$)

Parallel Tempering

Ingredients:
(1) Energy function: $h(x) \propto-\log \pi(x)$ (i.e. $T=1$)
(2) Temperature levels:

$$
1=T_{0}<T_{1}<\cdots<T_{K}
$$

Parallel Tempering

Ingredients:
(1) Energy function: $h(x) \propto-\log \pi(x)$ (i.e. $T=1$)
(2) Temperature levels:

$$
1=T_{0}<T_{1}<\cdots<T_{K}
$$

(3) Tempered Targets:

$$
\pi_{i}(x) \propto \exp \left\{-h(x) / T_{i}\right\}
$$

Parallel Tempering

Ingredients:
(1) Energy function: $h(x) \propto-\log \pi(x)$ (i.e. $T=1$)
(2) Temperature levels:

$$
1=T_{0}<T_{1}<\cdots<T_{K}
$$

(3) Tempered Targets:

$$
\pi_{i}(x) \propto \exp \left\{-h(x) / T_{i}\right\}
$$

(4) Hotter chains are easier to sample from (flatter), allow for a filtering of states from higher to lower temperatures (random exchange) to avoid local modes etc.

Equi-Energy Sampling

Ingredients:

Equi-Energy Sampling

Ingredients:
(1) Energy function: $h(x) \propto-\log \pi(x)$ (i.e. $T=1$)

Equi-Energy Sampling

Ingredients:
(1) Energy function: $h(x) \propto-\log \pi(x)$ (i.e. $T=1$)
(2) Temperature levels:

$$
1=T_{0}<T_{1}<\cdots<T_{K}
$$

Equi-Energy Sampling

Ingredients:
(1) Energy function: $h(x) \propto-\log \pi(x)$ (i.e. $T=1$)
(2) Temperature levels:

$$
1=T_{0}<T_{1}<\cdots<T_{K}
$$

(3) Energy levels:

$$
H_{0} \leq \inf _{x}\{h(x)\}<H_{1}<H_{2}<\cdots<H_{K}<H_{K+1}=\infty
$$

Equi-Energy Sampling

Ingredients:
(1) Energy function: $h(x) \propto-\log \pi(x)$ (i.e. $T=1$)
(2) Temperature levels:

$$
1=T_{0}<T_{1}<\cdots<T_{K}
$$

(3) Energy levels:

$$
H_{0} \leq \inf _{x}\{h(x)\}<H_{1}<H_{2}<\cdots<H_{K}<H_{K+1}=\infty
$$

(4) Per-level energy functions:

$$
h_{i}(x)=\frac{1}{T_{i}} \max \left\{h(x), H_{i}\right\} \quad \text { i.e. } \quad \pi_{i}(x) \propto\left\{\begin{array}{cl}
e^{-h(x) / T_{i}} & \text { if } h(x)>H_{i} \\
e^{-H_{i} / T_{i}} & \text { if } h(x) \leq H_{i}
\end{array}\right.
$$

Figure：The equi－energy jump

Energy Levels: A Closer look

For those who are unfamiliar with temperature-scaling it may be helpful to look at exactly what we have in the familiar setting:

Energy Levels: A Closer look

For those who are unfamiliar with temperature-scaling it may be helpful to look at exactly what we have in the familiar setting:

$$
\pi_{i}(x)=\left\{\begin{array}{cl}
(\pi(x))^{1 / T_{i}} & \text { if } \pi(x)>e^{-H_{i}} \\
\text { constant } & \text { if } \pi(x) \leq e^{-H_{i}}
\end{array}\right.
$$

Energy Levels: A Closer look

For those who are unfamiliar with temperature-scaling it may be helpful to look at exactly what we have in the familiar setting:

$$
\pi_{i}(x)=\left\{\begin{array}{cl}
(\pi(x))^{1 / T_{i}} & \text { if } \pi(x)>e^{-H_{i}} \\
\text { constant } & \text { if } \pi(x) \leq e^{-H_{i}}
\end{array}\right.
$$

- So the $i^{\text {th }}$-level target densities are (lower-)truncated and flattened versions of the original density

An example

Mixture t-normal

Temperature Effect

$h _\{i\}(x): c=0.1, T$ varying

Truncation Effect

$h _\{i\}(x): T=1, c$ varying

The Details

- Idea: Construct empirical energy rings $\hat{D}_{j}^{(K)}$ for $j=0,1, \ldots, K$
i.e. compute set membership $I(x)$ for each sampled state:

$$
I(x)=j \quad \text { if } \quad h(x) \in\left[H_{j}, H_{j+1}\right) \quad\left(\text { i.e. } \pi(x) \in\left[e^{-H_{j}}, e^{-H_{j+1}}\right)\right)
$$

EE-inspired Proposal Construction

The driving force of the posterior in the ancillary augmentation is the likelihood, as determined primarily by the isochrone tables.

- EE constructs energy bins in joint space...

EE-Inspired Proposal Construction

The driving force of the posterior in the ancillary augmentation is the likelihood, as determined primarily by the isochrone tables.

- EE constructs energy bins in joint space... here $2 n+2+p(p-1) / 2$

EE-Inspired Proposal Construction

The driving force of the posterior in the ancillary augmentation is the likelihood, as determined primarily by the isochrone tables.

- EE constructs energy bins in joint space... here $2 n+2+p(p-1) / 2$ ©

EE-inspired Proposal Construction

The driving force of the posterior in the ancillary augmentation is the likelihood, as determined primarily by the isochrone tables.

- EE constructs energy bins in joint space... here $2 n+2+p(p-1) / 2 \oplus$
- For Gibbs step drawing (M_{i}, A_{i}), we can utilize the common structure of the isochrone tables
- We have a map ahead of time of which parameter combinations map to 'similar' regions of the observation space
- Construct 'energy-based' proposal based on this
- Partition parameter space into 'boxes' and characterize distance between boxes...

Delaunay triangulation

tri.mesh(rpois(100, lambda $=20$), rpois(100, lambda $=20$), duplicate $=$ "remove")
Figure: Example of Delaunay Triangulation

Delaunay triangulation

Figure: Delaunay Triangulation of (M, A)

Figure: Close up view of the partition

Parsimonious Representation

Storging a 'box-to-box' proposal weight matrix is a little cumbersome as the number of boxes is relatively large ($\approx 193,000$).

Instead we cluster the boxes into 'clusters' of boxes that are 'close' in color/magnitude space, then propose (uniformly) within the clusters, and store a much smaller cluster-to-cluster proposal.

Posterior distribution

Likelihood Surface

Transformation: SA->AA (transition)

Posterior in AA-parametrization

Proposal distribution in AA-parametrization

IMPLEMENTATION

The goal was a general purpose methodology for CMD-esque analysis, for which we have developed (and are developing) an R package cmd, complete with other computational and graphical tools for CMD-analysis.

The algorithm is implemented in C, and can effectively datasets up to $\approx 2,000,000$ observations.

The package can be run in standard form or, for more intensive analyses, a multi-threaded implementation is available for parallel computation.

Python front end expected in the future...

Results

Simulating from the model and fitting, we check the sampling scheme validates (on average)...

Results

Simulating from the model and fitting, we check the sampling scheme validates (on average)...

Validation Recipe (Aggregate)

1. Simulate parameters from the prior distribution, M times,
2. For each parameter combination, simulate a dataset conditional on these,
3. Compute the posterior interval(s) for each of these datasets,
4. Compute whether or not each interval covers the truth.

Coverage rates of 95% interval (etc) should agree with nominal level.

Trace of $\mathrm{m}_{-} 0$

Trace of a_0

Trace of mu_age

Trace of ss_age

Density of $\mathbf{m} _0$

Density of a_0

Density of mu_age

Density of ss_age

Trace of m_0

Trace of a_0

Trace of mu_age

Trace of ss_age

Density of m_0

Density of a_0

Density of mu_age

Density of ss_age

$\mathrm{N}=250000$ Bradwidh = 4.04e-c8

Figure: Convergence plots for sampler with Parallel Tempering

Figure: Convergence plots for sampler with box-and-cluster proposal in the ancillary augmentation

Actual vs. Nominal Coverage

Coverage Table

	1%	2.5%	5%	25%	50%	75%	95%	97.5%	99%
m_i	0.7	2.1	4.4	24.6	49.3	74.6	94.5	97.2	99.2
a_i	1.1	2.8	5.0	25.1	49.1	74.5	94.8	97.6	99.0
mu_a	0.7	1.9	4.0	24.9	48.2	74.8	94.6	97.4	99.1
sigmasq_a	0.7	1.6	3.2	23.7	48.3	75.0	95.3	97.3	99.3

Table: Coverage table for the standard SA+AA box+cluster sampler with Geneva isochrones.

Summary

- Use a flexible hierarchical Bayesian model to make inference about properties of stellar clusters
- The complex 'black-box' nature of the lookup table presents computation challenges
- By interweaving two complementary parametrizations we can gain relative to each individual scheme
- Distinction between inferential and computational parametrizations
- Combination of several heavy-hitting MCMC techinques allows us to effectively sample from the posterior for wide range of lookup tables

References

Acknowledgments

1. Kou, S.C., Zhou, Q., Wong, W.H., (2006) Equi-Energy Sampler with applications in statistical inference and statistical mechanics. The Annals of Statistics, 34-4, pp.1581-1619
2. Geyer, C.J. (1991) Markov chain Monte Carlo maximum likelihood. Computing Science and Statistics Proceedings of the 23rd Symposium on the Interface, p. 156-163.
3. Baines, P.D., Meng, X.-L., Zezas, A., Kashyap, V.K., Lee, H. (2009) Bayesian Analysis of Color-Magnitude Diagrams (in progress)
4. Yu, Y., Meng, X.-L. (2009) To Center or Not To Center: That Is Not The Question, (in progress)
