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The model

Let Yobs
i ∼ Pois(ξi), where ξi is photon intensity in wavelength

channel i, i= 1 . . . I and

ξ= ξsource+ ξbkg =MD

 

λC +
∑

k

λL
k

!

+ ξbkg

=MD

 

GC +
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γkGL
k

!

µ+ ξbkg,

Parameters are γ and µ.
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Previously estimated Capella DEM
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log10(DEM) used for simulations
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Other properties of current simulations

• Includes all censoring, adds informative prior to abundances

• 16 nodes and some smoothing (αρ=20): Depending on the
starting point EM converges in 200-500 iterations

• 16 nodes and some smoothing (αρ=2): EM converges in
800-1100 iterations
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Estimated DEM
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Estimated log10(DEM)
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Estimated abundance
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Estimated rho
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Estimated rho
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Gibbs in a nutshell

• Initiating parameters γ,µ

• 5 steps of sampling different missing data

• Updating abundance γ(t+1)|µ(t),γ(t),Ymis

• 3 more steps of sampling missing data

• Updating (scaled) DEM µ̃(t+1)|Ymis, where µ̃= f(γ)µ
• Rescale DEM µ(t+1) = µ̃(t+1)/f

�

γ(t+1)
�

• Properties of a current simulation: minimal smoothing
(αρ=2), 16 nodes for log10(T), 10000 simulations including
1000 of burn-in
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Rho trace

0 2000 4000 6000 8000

0.
94

0.
96

0.
98

1.
00

Scale 1, R = 1

Index

M
ul

tis
ca

le
 s

m
oo

th
in

g 
le

ve
ls

0 2000 4000 6000 8000

0.
12

0.
18

Scale 2, R = 1

Index

M
ul

tis
ca

le
 s

m
oo

th
in

g 
le

ve
ls

0 2000 4000 6000 8000
0.

2
0.

6

Scale 2, R = 1.04

Index

M
ul

tis
ca

le
 s

m
oo

th
in

g 
le

ve
ls



EM results from the simulation EM results on a real data Gibbs results from the simulation Alternative sampling of the DEM

Rho trace
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Rho trace
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Abundance trace
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Posterior distribution of µ|γ, Yobs

p(µ|γ, Yobs)∝ p(µ)
∏

i

p(Yobs
i |µ,γ),

where

Yobs
i |µ,γ∼ Pois







J
∑

j=1

Mi,jdj

 

T
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t=1

GC
j,tµt+

T
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t=1

∑

k

γkGL
k,j,tµt

!

+ ξbkg
i







= Pois

 

T
∑

t=1

hi,tµt+ ξ
bkg
i

!

,

with µ1 = µ0
∏R

r=1ρr,0, µT = µ0
∏R

r=1(1−ρr,2r−1) and each µt is a
product of µ0 and R splitting factors, either ρr,n or (1−ρr,n). The
following example clarifies the representation (R=4)

µ12 = µ0q12,R = µ0(1−ρ0,0)q12,R−1 = µ0(1−ρ0,0)ρ1,1q12,R−2

= · · ·= µ0(1−ρ0,0)ρ1,1(1−ρ2,3)(1−ρ2,6)
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Parametrization of the multiscale smoothing
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Posterior distribution of (µ0,ρ)|γ,Yobs

• µ0 ∼ Gamma(αµ)/βµ, where flat prior would correspond to
αµ = 1 and βµ = 0
• ρr,n ∼ Beta(αρ,αρ), r= 0, . . . , R− 1 and n= 0, . . . , 2r− 1
• Instead of working with Yobs we can also use Y (counts free

from the background contamination)

p(µ0,ρ|γ,Y)∝ p(µ0)
∏

r,n
p(ρr,n)

∏

i

p(Yi|ρ,µ0,γ).

As it was noted previously

Yi|µ0,ρ,γ∼ Pois

 

T
∑

t=1

hi,tµt

!

= Pois

 

µ0

T
∑

t=1

hi,tqt,R

!

= Pois
�

siµ0
�

Therefore, µ0 can be updated in closed form without any missing
data imputation

µ0|ρ,Y,γ∼ Gamma

 

αµ+
∑

i

Yi

!

/

 

βµ+
∑

i

si

!
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Updating splitting factors
Since ρr,n ∼ Beta(αρ,αρ) and

p(ρ0,0|ρ−,µ0,γ,Y)∝ p(ρ0,0)
∏

i

p(Yi|ρ,µ0,γ).

The distribution of background-free counts can be represented as

Yi|µ0,ρ,γ= Pois







T/2
∑

t=1

hi,tµ0ρ0,0qt,R−1+
T
∑

t=T/2+1

hi,tµ0(1−ρ0,0)qt,R−1







= Pois
�

si,1ρ0,0+ si,2(1−ρ0,0)
�

,

then the conditional distribution of ρ0,0|ρ−,µ0,Y,γ has the
following form

ρ
αρ−1
0,0 (1−ρ0,0)

αρ−1
∏

i

(si,1ρ0,0+ si,2(1−ρ0,0))
Yie−(si,1ρ0,0+si,2(1−ρ0,0))
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Updating splitting factors
Possible idea: update splitting factors by scale level. The number
of simultaneously updated factors would be 1, 2, 4, 8, 16,etc.

For example let
ηi = si,2,1ρ1,0+ si,2,2(1−ρ1,0) + si,2,3ρ1,1+ si,2,4(1−ρ1,1),
then p(ρ1,0,ρ1,1|ρ−,µ0,γ,Y)∝
ρ
αρ−1
1,0 (1−ρ1,0)

αρ−1ρ
αρ−1
1,1 (1−ρ1,1)

αρ−1
∏

iη
Yi
i e−ηi

Implementation questions:

• Which proposal is the best? Truncated MVN (or MVt), others?
OR simply evaluate the posterior and sample from the grid
(since each ρr,n < 1)?

• Other updating scheme? One-by-one, in pairs etc.

• Update µ directly? (the posterior is not that simple since each
prior on ρr,n contains all µ1, . . . ,µT)

• Alternate this scheme with full augmentation?
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