Reconstructing stellar DEM and metallicity using high-resolution X-ray Spectra

Victoria Liublinska
Joint work with CHASC: X.-L. Meng, V. Kashyap, D. van Dyk

Harvard University

June 15, 2010

The model

Let $Y_{i}^{o b s} \sim \operatorname{Pois}\left(\xi_{i}\right)$, where ξ_{i} is photon intensity in wavelength channel $i, i=1 \ldots I$ and

$$
\begin{aligned}
\xi & =\xi^{\text {source }}+\xi^{b k g}=M D\left(\lambda^{C}+\sum_{k} \lambda_{k}^{L}\right)+\xi^{b k g} \\
& =M D\left(G^{C}+\sum_{k} \gamma_{k} G_{k}^{L}\right) \mu+\xi^{b k g},
\end{aligned}
$$

Parameters are $\boldsymbol{\gamma}$ and $\boldsymbol{\mu}$.

Previously estimated Capella DEM

Capella DEM Reconstruction

log10(DEM) used for simulations

log10(DEM) used for simulations (16 nodes)

$\log 10(\mathrm{DEM})$ used for simulations (16 nodes)

Other properties of current simulations

- Includes all censoring, adds informative prior to abundances
- 16 nodes and some smoothing ($\alpha_{\rho}=20$): Depending on the starting point EM converges in 200-500 iterations
- 16 nodes and some smoothing ($\alpha_{\rho}=2$): EM converges in 800-1100 iterations

Estimated DEM

Estimated $\log 10(D E M)$

No smoothing

Estimated abundance

Elements

Estimated rho

No smoothing

Estimated rho

Real data

Gibbs in a nutshell

- Initiating parameters $\boldsymbol{\gamma}, \boldsymbol{\mu}$
- 5 steps of sampling different missing data
- Updating abundance $\boldsymbol{\gamma}^{(t+1)} \mid \boldsymbol{\mu}^{(t)}, \boldsymbol{\gamma}^{(t)}, \boldsymbol{Y}_{\text {mis }}$
- 3 more steps of sampling missing data
- Updating (scaled) DEM $\tilde{\mu}^{(t+1)} \mid Y_{\text {mis }}$, where $\tilde{\mu}=f(\gamma) \boldsymbol{\mu}$
- Rescale DEM $\mu^{(t+1)}=\tilde{\mu}^{(t+1)} / f\left(\gamma^{(t+1)}\right)$

Gibbs in a nutshell

- Initiating parameters $\boldsymbol{\gamma}, \boldsymbol{\mu}$
- 5 steps of sampling different missing data
- Updating abundance $\gamma^{(t+1)} \mid \mu^{(t)}, \gamma^{(t)}, Y_{\text {mis }}$
- 3 more steps of sampling missing data
- Updating (scaled) DEM $\tilde{\mu}^{(t+1)} \mid Y_{\text {mis }}$, where $\tilde{\mu}=f(\gamma) \boldsymbol{\mu}$
- Rescale DEM $\mu^{(t+1)}=\tilde{\mu}^{(t+1)} / f\left(\gamma^{(t+1)}\right)$
- Properties of a current simulation: minimal smoothing ($\alpha_{\rho}=2$), 16 nodes for $\log 10(T), 10000$ simulations including 1000 of burn-in

Rho trace

Scale 1, R = 1

Scale 2, R = 1

Scale 2, R = 1.04

Rho trace

Rho trace

Scale 4, R = 1.28

Scale 4, R = 1.05

Scale 4, R = 1.09

Scale 4, R = 1.06

Scale 4, R = 1.04

Scale 4, R = 1.01

Scale 4, R = 1.04

Scale 4, R = 1.08

Mu total trace

Mu total, $\mathrm{R}=1$

Abundance trace

Element AI, R=1
Multiscale smoothing levels

Element $\mathrm{O}, \mathrm{R}=1.01$

Element $\mathrm{S}, \mathrm{R}=1$

Element Mg, R=1

Element $\mathrm{Fe}, \mathrm{R}=1$

Posterior distribution of $\mu \mid \gamma, Y^{o b s}$

$$
p\left(\boldsymbol{\mu} \mid \boldsymbol{\gamma}, Y^{o b s}\right) \propto p(\boldsymbol{\mu}) \prod_{i} p\left(Y_{i}^{\text {obs }} \mid \boldsymbol{\mu}, \gamma\right),
$$

where

$$
\begin{aligned}
Y_{i}^{o b s} \mid \boldsymbol{\mu}, \boldsymbol{\gamma} & \sim \operatorname{Pois}\left(\sum_{j=1}^{J} M_{i, j} d_{j}\left(\sum_{t=1}^{T} G_{j, t}^{C} \mu_{t}+\sum_{t=1}^{T} \sum_{k} \gamma_{k} G_{k, j, t}^{L} \mu_{t}\right)+\xi_{i}^{b k g}\right) \\
& =\operatorname{Pois}\left(\sum_{t=1}^{T} h_{i, t} \mu_{t}+\xi_{i}^{b k g}\right),
\end{aligned}
$$

Posterior distribution of $\mu \mid \gamma, Y^{o b s}$

$$
p\left(\mu \mid \gamma, Y^{o b s}\right) \propto p(\boldsymbol{\mu}) \prod_{i} p\left(Y_{i}^{\text {Yos }} \mid \boldsymbol{\mu}, \gamma\right),
$$

where

$$
\begin{aligned}
Y_{i}^{\text {obs }} \mid \boldsymbol{\mu}, \boldsymbol{\gamma} & \sim \text { Pois }\left(\sum_{j=1}^{J} M_{i, j} d_{j}\left(\sum_{t=1}^{T} G_{j, t}^{C} \mu_{t}+\sum_{t=1}^{T} \sum_{k} \gamma_{k} G_{k, j, t}^{L} \mu_{t}\right)+\xi_{i}^{b k g}\right) \\
& =\text { Pois }\left(\sum_{t=1}^{T} h_{i, t} \mu_{t}+\xi_{i}^{b k g}\right)
\end{aligned}
$$

with $\mu_{1}=\mu_{0} \prod_{r=1}^{R} \rho_{r, 0}, \mu_{T}=\mu_{0} \prod_{r=1}^{R}\left(1-\rho_{r, 2^{r}-1}\right)$ and each μ_{t} is a product of μ_{0} and R splitting factors, either $\rho_{r, n}$ or $\left(1-\rho_{r, n}\right)$.

Posterior distribution of $\mu \mid \gamma, Y^{\text {obs }}$

$$
p\left(\mu \mid \gamma, Y^{o b s}\right) \propto p(\mu) \prod_{i} p\left(Y_{i}^{\left(y_{i} s \mid\right.} \mid, \gamma\right),
$$

where

$$
\begin{aligned}
Y_{i}^{o b s} \mid \boldsymbol{\mu}, \gamma & \sim \operatorname{Pois}\left(\sum_{j=1}^{J} M_{i, j} d_{j}\left(\sum_{t=1}^{T} G_{j, t}^{C} \mu_{t}+\sum_{t=1}^{T} \sum_{k} \gamma_{k} G_{k, j, t}^{L} \mu_{t}\right)+\xi_{i}^{b k g}\right) \\
& =\operatorname{Pois}\left(\sum_{t=1}^{T} h_{i, t} \mu_{t}+\xi_{i}^{b k g}\right)
\end{aligned}
$$

with $\mu_{1}=\mu_{0} \prod_{r=1}^{R} \rho_{r, 0}, \mu_{T}=\mu_{0} \prod_{r=1}^{R}\left(1-\rho_{r, 2^{r}-1}\right)$ and each μ_{t} is a product of μ_{0} and R splitting factors, either $\rho_{r, n}$ or $\left(1-\rho_{r, n}\right)$. The following example clarifies the representation $(R=4)$

$$
\begin{gathered}
\mu_{12}=\mu_{0} q_{12, R}=\mu_{0}\left(1-\rho_{0,0}\right) q_{12, R-1}=\mu_{0}\left(1-\rho_{0,0}\right) \rho_{1,1} q_{12, R-2} \\
=\cdots=\mu_{0}\left(1-\rho_{0,0}\right) \rho_{1,1}\left(1-\rho_{2,3}\right)\left(1-\rho_{2,6}\right)
\end{gathered}
$$

Parametrization of the multiscale smoothing

Posterior distribution of $\left(\mu_{0}, \boldsymbol{\rho}\right) \mid \gamma, Y^{o b s}$

- $\mu_{0} \sim \operatorname{Gamma}\left(\alpha_{\mu}\right) / \beta_{\mu}$, where flat prior would correspond to $\alpha_{\mu}=1$ and $\beta_{\mu}=0$
- $\rho_{r, n} \sim \operatorname{Beta}\left(\alpha_{\rho}, \alpha_{\rho}\right), r=0, \ldots, R-1$ and $n=0, \ldots, 2^{r}-1$
- Instead of working with $\boldsymbol{Y}^{\text {obs }}$ we can also use \boldsymbol{Y} (counts free from the background contamination)

Posterior distribution of $\left(\mu_{0}, \boldsymbol{\rho}\right) \mid \boldsymbol{\gamma}, Y^{o b s}$

- $\mu_{0} \sim \operatorname{Gamma}\left(\alpha_{\mu}\right) / \beta_{\mu}$, where flat prior would correspond to $\alpha_{\mu}=1$ and $\beta_{\mu}=0$
- $\rho_{r, n} \sim \operatorname{Beta}\left(\alpha_{\rho}, \alpha_{\rho}\right), r=0, \ldots, R-1$ and $n=0, \ldots, 2^{r}-1$
- Instead of working with $\boldsymbol{Y}^{\text {obs }}$ we can also use \boldsymbol{Y} (counts free from the background contamination)

$$
p\left(\mu_{0}, \boldsymbol{\rho} \mid \boldsymbol{\gamma}, \boldsymbol{Y}\right) \propto p\left(\mu_{0}\right) \prod_{r, n} p\left(\rho_{r, n}\right) \prod_{i} p\left(Y_{i} \mid \boldsymbol{\rho}, \mu_{0}, \boldsymbol{\gamma}\right)
$$

Posterior distribution of $\left(\mu_{0}, \boldsymbol{\rho}\right) \mid \gamma, Y^{\text {obs }}$

- $\mu_{0} \sim \operatorname{Gamma}\left(\alpha_{\mu}\right) / \beta_{\mu}$, where flat prior would correspond to $\alpha_{\mu}=1$ and $\beta_{\mu}=0$
- $\rho_{r, n} \sim \operatorname{Beta}\left(\alpha_{\rho}, \alpha_{\rho}\right), r=0, \ldots, R-1$ and $n=0, \ldots, 2^{r}-1$
- Instead of working with $Y^{o b s}$ we can also use Y (counts free from the background contamination)

$$
p\left(\mu_{0}, \boldsymbol{\rho} \mid \boldsymbol{\gamma}, \boldsymbol{Y}\right) \propto p\left(\mu_{0}\right) \prod_{r, n} p\left(\rho_{r, n}\right) \prod_{i} p\left(Y_{i} \mid \boldsymbol{\rho}, \mu_{0}, \boldsymbol{\gamma}\right)
$$

As it was noted previously
$Y_{i} \mid \mu_{0}, \boldsymbol{\rho}, \boldsymbol{\gamma} \sim \operatorname{Pois}\left(\sum_{t=1}^{T} h_{i, t} \mu_{t}\right)=\operatorname{Pois}\left(\mu_{0} \sum_{t=1}^{T} h_{i, t} q_{t, R}\right)=\operatorname{Pois}\left(s_{i} \mu_{0}\right)$

Posterior distribution of $\left(\mu_{0}, \boldsymbol{\rho}\right) \mid \boldsymbol{\gamma}, \boldsymbol{Y}^{\text {obs }}$

- $\mu_{0} \sim \operatorname{Gamma}\left(\alpha_{\mu}\right) / \beta_{\mu}$, where flat prior would correspond to $\alpha_{\mu}=1$ and $\beta_{\mu}=0$
- $\rho_{r, n} \sim \operatorname{Beta}\left(\alpha_{\rho}, \alpha_{\rho}\right), r=0, \ldots, R-1$ and $n=0, \ldots, 2^{r}-1$
- Instead of working with $Y^{\text {obs }}$ we can also use Y (counts free from the background contamination)

$$
p\left(\mu_{0}, \boldsymbol{\rho} \mid \boldsymbol{\gamma}, \boldsymbol{Y}\right) \propto p\left(\mu_{0}\right) \prod_{r, n} p\left(\rho_{r, n}\right) \prod_{i} p\left(Y_{i} \mid \boldsymbol{\rho}, \mu_{0}, \boldsymbol{\gamma}\right)
$$

As it was noted previously
$Y_{i} \mid \mu_{0}, \boldsymbol{\rho}, \boldsymbol{\gamma} \sim \operatorname{Pois}\left(\sum_{t=1}^{T} h_{i, t} \mu_{t}\right)=$ Pois $\left(\mu_{0} \sum_{t=1}^{T} h_{i, t} q_{t, R}\right)=\operatorname{Pois}\left(s_{i} \mu_{0}\right)$
Therefore, μ_{0} can be updated in closed form without any missing data imputation

$$
\mu_{0} \mid \boldsymbol{\rho}, \boldsymbol{Y}, \boldsymbol{\gamma} \sim \operatorname{Gamma}\left(\alpha_{\mu}+\sum_{i} Y_{i}\right) /\left(\beta_{\mu}+\sum_{i} s_{i}\right)
$$

Updating splitting factors

Since $\rho_{r, n} \sim \operatorname{Beta}\left(\alpha_{\rho}, \alpha_{\rho}\right)$ and

$$
p\left(\rho_{0,0} \mid \boldsymbol{\rho}_{-}, \mu_{0}, \boldsymbol{\gamma}, \boldsymbol{Y}\right) \propto p\left(\rho_{0,0}\right) \prod_{i} p\left(Y_{i} \mid \boldsymbol{\rho}, \mu_{0}, \boldsymbol{\gamma}\right)
$$

The distribution of background-free counts can be represented as

$$
\begin{aligned}
Y_{i} \mid \mu_{0}, \boldsymbol{\rho}, \boldsymbol{\gamma} & =\operatorname{Pois}\left(\sum_{t=1}^{T / 2} h_{i, t} \mu_{0} \rho_{0,0} q_{t, R-1}+\sum_{t=T / 2+1}^{T} h_{i, t} \mu_{0}\left(1-\rho_{0,0}\right) q_{t, R-1}\right) \\
& =\operatorname{Pois}\left(s_{i, 1} \rho_{0,0}+s_{i, 2}\left(1-\rho_{0,0}\right)\right),
\end{aligned}
$$

Updating splitting factors

Since $\rho_{r, n} \sim \operatorname{Beta}\left(\alpha_{\rho}, \alpha_{\rho}\right)$ and

$$
p\left(\rho_{0,0} \mid \boldsymbol{\rho}_{-}, \mu_{0}, \boldsymbol{\gamma}, \boldsymbol{Y}\right) \propto p\left(\rho_{0,0}\right) \prod_{i} p\left(Y_{i} \mid \boldsymbol{\rho}, \mu_{0}, \boldsymbol{\gamma}\right)
$$

The distribution of background-free counts can be represented as

$$
\begin{aligned}
Y_{i} \mid \mu_{0}, \boldsymbol{\rho}, \boldsymbol{\gamma} & =\operatorname{Pois}\left(\sum_{t=1}^{T / 2} h_{i, t} \mu_{0} \rho_{0,0} q_{t, R-1}+\sum_{t=T / 2+1}^{T} h_{i, t} \mu_{0}\left(1-\rho_{0,0}\right) q_{t, R-1}\right) \\
& =\operatorname{Pois}\left(s_{i, 1} \rho_{0,0}+s_{i, 2}\left(1-\rho_{0,0}\right)\right),
\end{aligned}
$$

then the conditional distribution of $\rho_{0,0} \mid \boldsymbol{\rho}_{-}, \mu_{0}, \boldsymbol{Y}, \boldsymbol{\gamma}$ has the following form

$$
\rho_{0,0}^{\alpha_{\rho}-1}\left(1-\rho_{0,0}\right)^{\alpha_{\rho}-1} \prod_{i}\left(s_{i, 1} \rho_{0,0}+s_{i, 2}\left(1-\rho_{0,0}\right)\right)^{Y_{i}} e^{-\left(s_{i, 1} \rho_{0,0}+s_{i, 2}\left(1-\rho_{0,0}\right)\right)}
$$

Updating splitting factors

Possible idea: update splitting factors by scale level. The number of simultaneously updated factors would be $1,2,4,8,16$,etc.

Updating splitting factors

Possible idea: update splitting factors by scale level. The number of simultaneously updated factors would be $1,2,4,8,16$,etc. For example let
$\eta_{i}=s_{i, 2,1} \rho_{1,0}+s_{i, 2,2}\left(1-\rho_{1,0}\right)+s_{i, 2,3} \rho_{1,1}+s_{i, 2,4}\left(1-\rho_{1,1}\right)$, then $p\left(\rho_{1,0}, \rho_{1,1} \mid \boldsymbol{\rho}_{-}, \mu_{0}, \boldsymbol{\gamma}, \boldsymbol{Y}\right) \propto$
$\rho_{1,0}^{\alpha_{\rho}-1}\left(1-\rho_{1,0}\right)^{\alpha_{\rho}-1} \rho_{1,1}^{\alpha_{\rho}-1}\left(1-\rho_{1,1}\right)^{\alpha_{\rho}-1} \prod_{i} \eta_{i}^{Y_{i}} e^{-\eta_{i}}$

Updating splitting factors

Possible idea: update splitting factors by scale level. The number of simultaneously updated factors would be $1,2,4,8,16$,etc.
For example let
$\eta_{i}=s_{i, 2,1} \rho_{1,0}+s_{i, 2,2}\left(1-\rho_{1,0}\right)+s_{i, 2,3} \rho_{1,1}+s_{i, 2,4}\left(1-\rho_{1,1}\right)$,
then $p\left(\rho_{1,0}, \rho_{1,1} \mid \boldsymbol{\rho}_{-}, \mu_{0}, \boldsymbol{\gamma}, \boldsymbol{Y}\right) \propto$
$\rho_{1,0}^{\alpha_{\rho}-1}\left(1-\rho_{1,0}\right)^{\alpha_{\rho}-1} \rho_{1,1}^{\alpha_{\rho}-1}\left(1-\rho_{1,1}\right)^{\alpha_{\rho}-1} \prod_{i} \eta_{i}^{Y_{i}} e^{-\eta_{i}}$
Implementation questions:

- Which proposal is the best? Truncated MVN (or MVt), others? OR simply evaluate the posterior and sample from the grid (since each $\rho_{r, n}<1$)?
- Other updating scheme? One-by-one, in pairs etc.
- Update $\boldsymbol{\mu}$ directly? (the posterior is not that simple since each prior on $\rho_{r, n}$ contains all μ_{1}, \ldots, μ_{T})
- Alternate this scheme with full augmentation?

