Dust Temperature and Spectral Index Correlation?

Xianchao Xie

Department of Statistics, Harvard University

Joint work with Brandon Kelly

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Dust Emission

Spectral Energy Distribution Fitting

Modified Blackbody Assumption

$$S_{
u} \propto C \left(rac{
u}{
u_0}
ight)^{eta+3} \left(\exp\left(rac{h
u}{\kappa T}
ight) - 1
ight)^{-1}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 三 の

3/20

Parameter in the model: (β, T) .

Observations: $S_{\nu_1}, \cdots, S_{\nu_J}$.

The Empirical Inverse Correlation

A Physical Law or A Statistical One?

A Scientific Discovery

- Similar patterns on various galactic sources.
- Confirmed in different experiments by independent groups.

A Statistical Fallacy

- There are noises in the measurements.
- Estimates of parameters with noisy data are usually correlated.
- Simulation study has suggested that this might be the reason.

Two Types of Correlation

The Thought Process

$$(eta, au) o \mathsf{Clean}$$
 "Data" o Dirty Data $o (\hateta(extsf{data}), \hat{ extsf{T}}(extsf{data}))$

The Statistical Correlation

 $Corr(\hat{\beta}, \hat{T})$

The Scientific Correlation

 $Corr(\beta, T)$

Testing the Scientific Hypothesis

A Bayesian Model

Level 1 : $p(Data|\beta, T)$ Level 2 : $p(\beta, T)$

Scientific Hypothesis

 $\beta \perp T$ under $p(\beta, T)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Statistical Model I

Likelihood

$$S_{ij} = \delta_j C_i \left(\frac{\nu_j}{\nu_0}\right)^{\beta_i + 3} \left(\exp\left(\frac{h\nu_j}{\kappa T_i}\right) - 1\right)^{-1} e_{ij}$$

$$\delta_j \stackrel{i.i.d}{\sim} \mathsf{N}(0, \sigma_{\delta}^2), C_i \stackrel{i.i.d}{\sim} \mathsf{N}(\mu_c, \sigma_c^2), e_{ij} \stackrel{ind}{\sim} \mathsf{N}(0, \sigma_{ij}^2).$$

Prior

$$\begin{array}{rcl} \beta_i | T_i & \stackrel{i.i.d}{\sim} & \mathcal{N}(\mathcal{A}\mathcal{T}_i^B, \sigma_\beta^2) \\ T_i & \stackrel{i.i.d}{\sim} & \mathbf{1}_{[2,150]}(\mathcal{T}_i) d\mathcal{T}_i \end{array}$$

Hyper Prior

$$(\mu_c, \sigma_c^2, \sigma_\beta^2, \sigma_\delta^2) \sim d\mu_c d \ln \sigma_c^2 d \ln \sigma_b eta^2 d \ln \sigma_\delta^2$$

$$A \sim dA$$

$$B \sim 1_{[-2,2]}(B) dB$$

The Graphical Structure of the Model

The Plain-Vanilla Gibbs Sampler

Gibbs Components

Step I	:	$(\beta_i, C_i) (S_{i1}, \delta_1), \cdots, (S_{iJ}, \delta_J), T_i, \mu_c, A, B$
Step II	:	$T_i (S_{i1},\delta_1),\cdots,(S_{iJ},\delta_J),\beta_i,C_i,A,B$
Step III	:	$\delta_j (S_{1j}, T_1, \beta_1, C_1), \cdots, (S_{nj}, T_n, \beta_n, C_n)$
Step IV	:	$\mu_c, \sigma_c^2 C_1, \cdots, C_n$
Step V	:	$\sigma_{\delta}^2 \delta_1, \cdots, \delta_J$
Step VI	:	$A B, T_1, \cdots, T_n, \beta_1, \cdots, \beta_n$
Step VII	:	$B A, T_1, \cdots, T_n, \beta_1, \cdots, \beta_n$

Graphical Illustration of Step I

<ロト < 部ト < 注ト < 注ト 三 のへで 11/20

Graphical Illustration of Step II

Trace plot for β_1

・ ◆聞・ ◆居・ ◆居・ → 唐・ 今々で

Trace plot for T_1

1 ▶ ◀ @ ▶ ◀ 볼 ▶ ◀ 볼 ▶ ▲ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . 14/20

A Better Gibbs Sampler

Gibbs Components

- Step I : $(\beta_i, C_i)|(S_{i1}, \delta_1), \cdots, (S_{iJ}, \delta_J), T_i, \mu_c, \sigma_c^2, \sigma_\beta^2, A, B$
- Step II : $T_i|(S_{i1}, \delta_1), \cdots, (S_{iJ}, \delta_J), \beta_i, \mu_c, A, B$
- Step III : $\delta_j | (S_{1j}, T_1, \beta_1, C_1), \cdots, (S_{nj}, T_n, \beta_n, C_n)$
- Step IV : $\mu_c, \sigma_c^2 | C_1, \cdots, C_n$
- Step V : $\sigma_{\delta}^2 | \delta_1, \cdots, \delta_J$
- Step VI : $A|B, T_1, \cdots, T_n, \beta_1, \cdots, \beta_n$
- Step VII : $B|A, T_1, \cdots, T_n, \beta_1, \cdots, \beta_n$

Graphical Illustration of Step II

Trace plot for T_1

□ ◆ ◆ 王 ◆ 王 ◆ ◆ ○ ◆ ◆ ●

Application to Real Datasets

(▶ 《륜▶ 《불▶ 《불▶ 불 ∽) ९... 18/20

What's Wrong: Trace Plot for σ_c^2

How to incorporate the prior?

The Form of the Prior

$$(T, A, B) \sim \pi(T, A, B)$$

 $\beta | T, A, B \sim N(AT^B, \sigma_\beta^2)$

The Prior Knowledge

 $\beta \sim N(2.0, 0.2^2)$.

イロト イポト イヨト イヨト 二油