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Problem Introduction

* The most simple case. Let i be bin indicator.

Y,~Pois( A,)

e Two models:
Ho: A; = aE; "
Hy: A= aE " + Al



What is BF

e Given a model selection problem, suppose we observe data D,
denote two different models as M1 and M2, the Bayes factor
K is given by

Pr(D|M,) [JPr(D|8,.M.)dF;
Pr(D|M;)  [Pr(D|6,.M;)dF,

e BFis known to be dependent on prior choice



Why Using Bayes Factor

e Classical Likelihood ratio test doesn’t work here.

 There are ways to sample the posterior
distribution of all parameters(PCGS)

* Interested to see how BF performs compared to
other tools like Posterior Predictive P-value and
also how much does it depend on the prior



Ways to Compute BF

* [t's a HARD numerical integration problem.
fPr{Lr|a._,M._j|dF,51

e Methods to compute it include:
— Brute Force
— Gaussian Approximation
— Monte Carlo method



Gaussian Approximation

o Officially called Laplace approximation:

] = fpr (D6, M,)dF,, = fP:- (D|8.,M,)Pr (8,)d8. J-PJ'{EL_|B,M._:|L1'EI'._

e Assume we have large sample size, posterior dist’n
“would” be approximately Gaussian around its mode.

[ = @m2|For|*2 - Pr(y|6,,M,) - Pr (8;)

* |t works when the Gaussian Approximation
assumption is valid.



Monte Carlo Method 1

Recall we need calculate:
[ = fPerIELMj-Pr(Er]dEr

If we have a sample from the prior dist’n:
- 1 - .
I = ;-Z p(y|6i, M)

It is simple/ easy to sample the prior

If likelihood is peaked around the mode, the sum
would be dominated by a few samples.



Monte Carlo Method 1

If we have a sample from the posterior dist’n

With little trick:

71 -1

- 1 1
= K;Z p(yl6t, M)

=1

It’s still simple/ we know how to sample posterior

Likelihood on the denominator = disaster...



Ex: Simulation Study 1

Assume powerlaw model for continuum

M= E Pvskh=oaE P+ A P
Line_location is assumed to be known in this study.
Assign uniform prior to all other parameters

True line_location is @bin[150], where continuum
intensity is equal to 32.

Posterior distribution does look Gaussian

Only method that works is Laplace Approximation.



Heatplot of BF for Simulation 1
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Heatmap of PPP for Simulation_1
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Ex: Simulation study 2

Still assume powerlaw for continuum
A= - EE-_E VS A; = [I'EE-_E + w-ls-

Both line_intensity and line_location are unknown; Assume
uniform prior for line_intensity; Gaussian derived discrete
prior for line_location.

True line_location is @bin[150], where continuum intensity
is equal to 32.

Posterior distribution no longer looks Gaussian. Only
method works is to use brute force.



uniform prior range of line_intensity

e Data @Bin[150] =32
e PPP=0.36
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uniform prior range of line_intensity

e Data @Bin[150] = 32+7

* PPP=0.36
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uniform prior range of line_intensity

e Data @Bin[150] =32 + 14

* PPP=0.36
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uniform prior range of line_intensity

e Data @Bin[150] =32 + 21
e PPP=0.36
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Cont’d: Simulation_2

e When prior mode for the line_location is at the
“true” line_location, the power of BF is strongly
dependent on the prior standand deviation of its
prior.

e When prior mode for the line location is away
from the “true” line_location, the power of BF
decreases a lot.

e What is the usual choice of the priors here?



Simulation 3 and Discussion

Same problem settings except that all parameters
are unknown.

Posterior dist'n doesn’t look Gaussian.
No method works.

Two more methods are tried:
— Bridge Sampling
— Savage density ratio



Bridge Sampling
Designed to calculate the ratio of two normalizing constant.

BF is the ratio of normalizing constant for two_posterior dist’n.
I = fP:-{er._,ﬂrL_deﬁi = fPJ' (D|8,.M,)Pr (8,)d8, x fPJ' (8,|D.M,)db,

L tF-"-=i th G _ E;|q,(w)a(w)]
Lo e T E g (@) a(w)]

However, bridge sampling requires both models have common
support of parameter space.

Can we re-write null model into: A = aE; © + wli=,
But with constraints like: w~unif(0,1)



Savage Density Ratio

For nested models:

_ Pr(y =1 M)
 Pr(y =1V, My)

Work for us if line_location is known. Equivalent to test
line_intensity is equal to zero.

However, bridge sampling and savage density ratio also
doesn’t perform as good as Laplace Approximation.

Next step?
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