# Real-Time Light Curve Classification

Dan Cervone

CHASC

October 2, 2012

Dan Cervone (CHASC)

Real-Time Light Curve Classification

October 2, 2012 1 / 104

3

・ 同 ト ・ ヨ ト ・ ヨ ト



2 Statistical Model

3 Design for choosing future observations

#### Technical details





3

-



- 2) Statistical Model
- 3 Design for choosing future observations
- 4 Technical details
- 5 Results
- Graphical illustration of observation schedule

-

Scientists are interested in studying variable light sources for a number of reasons, including making inferences about the distribution of dark matter and evolution of the universe.

- Number of observable sources vastly outscales resources for observation.
- Astronomers seek to maximize the information (per unit time) given from their limited resources.
- Don't want to waste time and imagery on sources that don't give us new or useful information.

#### Our data

Our "training" data is a tiny subset of the MACHO light curve catalog.

- 5652 number of curves
- 500-2000 observations per curve

Types of variable sources in our data fall into three major categories:

- Periodic sources: cepheids (short-period variable stars), eclipsing binary systems (EB), RR Lyrae, and long period variables (LPV).
- Non-periodic, stochastic sources: Be, Quasars.
- Event-based: Supernovae, microlensing events.
- (There are also nonvariable sources, which make up the majority of our database).

- 3

- 4 同 6 4 日 6 4 日 6













October 2, 2012



October 2, 2012





October 2, 2012

2 Statistical Model

Design for choosing future observations

4 Technical details

#### 5 Results

Graphical illustration of observation schedule

A 🖓 h

## Model Blueprint

We seek a statistical procedure that simultaneously satisfies four goals

- Classify an observed light curve, both for large and small numbers of observations.
- Predict future observations of a light curve.
- Use (1) and (2) to predict the time at which a future observation will be most informative
- Output Decision framework for use of the telescope.

Parts (1)-(3) will be adressed here in the context of our data, which represents only a subset of the variable source population. The decision framework alluded to in (4) would be an extension of the forthcoming results to reflect more specific scientific goals.

## Classification

Classifying variable sources is a very active research topic in astronomy and astrostatistics. We used Random Forest classifiers because:

- Provide "soft" classification, which is necessary for our larger inferential procedure.
- Common choice in light curve classification literature, using features similar to what are extractable from our data.
- Relatively quick to train and use for prediction.

# Classification

Features used for classification:

- Periodic features from generalized Lomb-Scargle periodogram:
  - Period, amplitude.
  - Variance reduction and goodness of fit.
  - Repeated at first harmonic.
- First four sample moments.
- Percentage of points beyond 1 SD of mean.
- Ratios of quantiles.

## Classification

For those unfamiliar with a Random Forest classifier:

- "Forest" of classification trees, each tree trained on random subset of total training data.
- Randomly sample a small number of input variables to make decisions at each node of each tree.
- Repeat to grow a forest of trees.
- New inputs are passed through each tree, and their votes are averaged to obtain predicted class probabilities.
- Unbiased estimate of global error rates obtained by passing units through trees they didn't help build.

17 / 104

< 回 ト < 三 ト < 三 ト

RF classifier confusion matrix, trained on 5 observations per light curve:

|      | ceph | rr  | eb | lpv | be | qu | sn | mic | nv  | class.error |
|------|------|-----|----|-----|----|----|----|-----|-----|-------------|
| ceph | 50   | 1   | 19 | 8   | 0  | 0  | 0  | 0   | 0   | 0.36        |
| rr   | 1    | 227 | 20 | 1   | 1  | 1  | 0  | 9   | 28  | 0.21        |
| eb   | 10   | 50  | 90 | 32  | 2  | 0  | 0  | 6   | 3   | 0.53        |
| lpv  | 3    | 11  | 32 | 283 | 17 | 2  | 0  | 8   | 5   | 0.22        |
| be   | 0    | 1   | 8  | 84  | 17 | 3  | 0  | 8   | 6   | 0.87        |
| qu   | 0    | 3   | 2  | 6   | 2  | 6  | 0  | 20  | 19  | 0.90        |
| sn   | 0    | 1   | 0  | 0   | 0  | 1  | 0  | 1   | 5   | 1.00        |
| mic  | 0    | 16  | 6  | 10  | 6  | 4  | 0  | 271 | 87  | 0.32        |
| nv   | 0    | 12  | 3  | 12  | 4  | 1  | 0  | 78  | 290 | 0.28        |

3

RF classifier confusion matrix, trained on 50 observations per light curve:

|      | ceph | rr  | eb  | lpv | be | qu | sn | mic | nv  | class.error |
|------|------|-----|-----|-----|----|----|----|-----|-----|-------------|
| ceph | 75   | 0   | 3   | 0   | 0  | 0  | 0  | 0   | 0   | 0.04        |
| rr   | 0    | 261 | 14  | 0   | 0  | 0  | 0  | 6   | 7   | 0.09        |
| eb   | 2    | 10  | 139 | 11  | 5  | 1  | 0  | 7   | 18  | 0.28        |
| lpv  | 0    | 0   | 2   | 337 | 19 | 0  | 0  | 3   | 0   | 0.07        |
| be   | 0    | 2   | 8   | 28  | 74 | 3  | 0  | 11  | 1   | 0.42        |
| qu   | 0    | 4   | 3   | 5   | 4  | 10 | 0  | 24  | 8   | 0.83        |
| sn   | 0    | 0   | 0   | 1   | 0  | 1  | 0  | 5   | 1   | 1.00        |
| mic  | 0    | 9   | 2   | 9   | 12 | 2  | 0  | 343 | 23  | 0.14        |
| nv   | 0    | 6   | 13  | 0   | 5  | 0  | 0  | 17  | 359 | 0.10        |

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

19 / 104

3

## Prediction

We model the observed magnitudes as a latent Gaussian Process with additive, independent noise. Conditional on a source belonging to class c, for i = 1, ..., n, we observe magnitude  $y_i$  at time  $t_i$ , assuming:

- $y_i = f_i + \epsilon_i$
- $\epsilon_i \stackrel{iid}{\sim} N(0, V_i)$  with  $V_i$  known.
- f ~ N(μ1, K<sub>c</sub>(t, t; φ)) where K<sub>c</sub> is a covariance function corresponding to class c, parameterized by φ.

Why model the latent source intensity as a Gaussian Process?

- Smoothness.
- Can incorporate physical assumptions such as stationarity and periodicity.
- Computationally fast when using small samples and assuming additive Gaussian noise.

#### Prediction

We will use two covariance functions, one for classes with periodic sources and one for nonperiodic source classes.

Squared exponential:  $K_c(s, t; \phi) = \sigma^2 \exp(-\beta (t-s)^2)$ 

Periodic: 
$$\mathcal{K}_{c}(s,t;\phi) = \sigma^{2} \exp\left(-\beta \sin\left(\frac{\pi(t-s)}{\tau}\right)^{2}\right)$$

- Both are isotropic (are functions only of |t s|).
- $\sigma^2$  is the variance of the stationary distribution for the source intensity
- $\beta$  is the (inverse) length-scale: larger values correspond to more variability in the source intensity per unit time; values closer to 0 correspond to smoother curves.

#### Prediction

For a curve belonging to class c and the parameters  $\mu$  and  $\phi$  fixed, the predictive distribution for a future observation  $t^*$  is easily obtained:

$$\begin{pmatrix} \mathbf{y} \\ \mathbf{y}^* \end{pmatrix} | \mathbf{C}, \phi \sim N \left( \mu \mathbf{1}, \begin{pmatrix} K_c(\mathbf{t}, \mathbf{t}; \phi) + \mathbf{D}_{\mathbf{V}} & K_c(t^*, \mathbf{t}; \phi) \\ K_c(\mathbf{t}, t^*; \phi) & \sigma^2 + V^* \end{pmatrix} \right)$$

where  $\mathbf{D}_{\mathbf{V}} = \text{diag}(V_1, ..., V_n)$ .  $V^*$  is unknown, but we may draw one from an inverse chi square or sample an existing observed  $V_i$ . Multivariate normal properties thus give

$$y^* | \mathbf{y}, V^*, C, \phi \sim N\left(\mu + K_{21}K_{11}^{-1}(\mathbf{y} - \mu \mathbf{1}), \sigma^2 + V^* - K_{21}K_{11}^{-1}K_{12}
ight)$$

# Prediction: GP fit for cepheids



# Prediction: GP fit for RR and none-variable



# Prediction: GP fit for LPVs



## Prediction: GP fit for Mic and Qu



- Design for choosing future observations 3

э

< 4 → < -

## Choosing future observations

Define the entropy for the multinomial distribution of class membership, conditional on the observed light curve:

$$H(C|\mathbf{y}) = -\sum_{c} P(C = c|\mathbf{y}) \log(P(C = c|\mathbf{y}))$$
(1)

For the purposes of classification, small entropies are desirable.

We define a related quantity, the **conditional entropy**,  $H(C|y^*, \mathbf{y})(t^*)$ , using (1) assuming we have a future observation  $y^*$ , and then averaging over the posterior predictive distribution  $y^*|\mathbf{y}$ :

$$H(C|y^*,\mathbf{y})(t^*) = \int_{-\infty}^{\infty} H(C|\mathbf{y},y^*) \rho(y^*|\mathbf{y}) dy^*$$
(2)

This posterior predictive distribution  $p(y^*|\mathbf{y})$  averages over unknown parameters of the Gaussian Process model of the source intensity as well as the unknown class memberships.

Dan Cervone (CHASC)

October 2, 2012 28

# Choosing future observations

Why consider conditional entropy  $H(C|y^*, \mathbf{y})(t^*)$ ?

- Function only of t<sup>\*</sup>; represent mean information gained for classification by observing next at time t<sup>\*</sup>.
- How are future observations useful to use if they are imputed from the present?
- Equivalent to considering mutual information for future observation  $y^*$  and class identity variable *C*, conditional on observed data.

# Summary of inferential procedure

So in order to classify light curves as quickly as possible, we (after having observed a handful of points initially) we:

- Obtain class probabilities conditional on observed data using RF classifier,  $P(C|\mathbf{y})$ .
- **2** Obtain posterior distributions of GP parameters  $\mu, \phi$  for each class (with nonzero probability).
- Solution Pick candidate  $t^*$  from a reasonable range of possible values given material constraints.
- For this t\*, use (1)-(2) to sample from the posterior predictive distrubtion  $p(y^*|\mathbf{y})$ .
- **(3)** Using these samples, compute the conditional entropy  $H(C|y^*, \mathbf{y})$ .
- Iterate steps (3)-(5) through your candidate set for  $t^*$ .
- Set  $t_{n+1} = \operatorname{argmin}_{t^*} H(C|y^*, \mathbf{y})$  and make observation.
- 8 Repeat.

#### 2 Statistical Model

3 Design for choosing future observations

#### Technical details

#### 5 Results



< 47 ▶ <

#### Choice of prior

Drawing from the posterior predictive distribution involves sampling from  $p(\mu, \phi | \mathbf{y}, C = c)$  for all classes *c*. A priori, we assume

$$\left(\begin{array}{c}\mu\\\log(\phi)\end{array}\right)|C\sim N\left(\left(\begin{array}{c}\mu_{0,c}\\\tilde{\phi}_{0,c}\end{array}\right),\Sigma_{0,c}\right)$$

 $(\tilde{\phi} \text{ represents log}(\phi))$ . For each class, we set  $\mu_{0,c}, \tilde{\phi}_{0,c}, \Sigma_{0,c}$  by

- Choosing a random subset of the light curves from class c and finding the MLEs for  $\mu$  and  $\tilde{\phi}$  for each using all observations.
- Setting  $\mu_{0,c}, \tilde{\phi}_{0,c}, \Sigma_{0,c}$  to the sample moments.
- Should give similar results as maximal marginal likelihood but much easier to implement.

# Sampling from posterior

Sampling the posterior  $p(\mu, \phi | \mathbf{y}, C = c)$  requires the following considerations:

- Needs to be efficient; every evaluation of the likelihood (and its gradient) requires matrix inversion.
- Should require no "hand" tuning, as we want it to run sequentially across sets of candidate observations over time.
- Handles multimodality; this is very common especially for the periodic kernel.

Metropolis-Hastings algorithm:

- Locate posterior modes and calculate first two derivatives.
- Using heights and curvature at modes, fit a multivariate *t* mixture approximation for the posterior.
- Generate independent Metropolis-Hastings proposals from this approximation to the posterior.

Dan Cervone (CHASC)

October 2, 2012

# Rules of probability and information theory

Combining fully parameterized Bayesian model for observations with nonparametric feature-based classifier has several consequences:

- Does the class-conditional distribution of features for each curve type depend on the observation schedule? This may bias  $P(C|\mathbf{y})$ .
- What is the joint probability for  $p(y^*, C|\mathbf{y})$ ? Two unequal representations depending on what is conditioned on:

•  $p(y^*|\mathbf{y}, C = c)P(C = c|\mathbf{y}) \neq P(C = c|\mathbf{Y}, y^*)p(y^*|\mathbf{y}).$ 

- Information additivity does not hold.
  - Theoretically  $H(C|\mathbf{y}, y^*) \leq H(C|\mathbf{y})$ .
  - This will not always hold with our model.
- Could this invite disaster?

34 / 104

- 2 Statistical Model
- 3 Design for choosing future observations
- Technical details



6 Graphical illustration of observation schedule

< 47 ▶ <

#### Results

Our results are based on simulated light curves.

- 9 "fake" curves for each class.
- For each curve, model for providing noise variance for any given t.
- MinEnt observational design compared to deterministic observation schedule and random observation schedule.
- Metric of comparison is probability of correct classification vs number of observed points.

## Correct classification probability (all types)



October 2, 2012

**A** ► <

# Correct classification probability (Cepheids)



October 2, 2012

A 1

## Correct classification probability (Be)



October 2, 2012

**A** ► <

# Correct classification probability (Eclipsing Binaries)



October 2, 2012

### Example: observations on a LPV



October 2, 2012

\_\_\_ ▶

#### Summary of results

The MinEnt observational selection scheme presented here seems to be an improvement over arbitrary random or deterministic observation schedules.

- True for measuring probability of correct classification over time (for most classes), as well as reduction in entropy over time.
- Strength of results hugely dependent on efficacy of classifier.
- We don't see improvements for classes whose features develop over longer time scale than what we use here.
- Results could also be strengthed by specificying more specific scientific goals/constraints (cost of time, different losses for different misclassifications).

42 / 104

3

#### Caveats and future improvements

The following are ways in which the model could be improved:

- Different modeling for additive noise (not actually independent of source intensity).
- Sequentially updating RF classifier, population distributions for  $\mu, \phi$ .
- Incorporating event detection procedures in features used for classification, and also in prediction.
- Incorporating observations from different spectra.
- Scalability: will this work over longer candidate observation windows, and for a longer number of iterations?
- Can we detect a new class?

3

#### 1 Introduction

- 2 Statistical Model
- 3 Design for choosing future observations
- 4 Technical details





< 4 → <



≣ •⁄ ९. ल \_\_\_\_\_45 / 104

<ロ> (日) (日) (日) (日) (日)



<ロ> (日) (日) (日) (日) (日)

2



• • ≥ • • ≥ • October 2, 2012

2

47 / 104

・ロト ・回ト ・ヨト



문 문 문

▲□ > < ≥ >



→

≣ •⁄ ९. ल \_\_\_\_\_49 / 104

< 4 2 > < 2 >



э

æ

< 🗇 🕨 🔹



문 > 문

51 / 104

▲□ > < ≥ >



문 문 문

▲□ > < ≥ >



э.

A (1) > (1) < (2) >

53 / 104

æ



문 > 문

▲□ > < ≥ >



→

æ

55 / 104

< 4 2 > < 2 >



ъ

▲ □ ► < □ ►</p>

56 / 104

æ



■ ► ■ つへで 2, 2012 57 / 104

▲□ > < ≥ >



 æ



문 > 문

▲□ > < ≥ >



문 > 문

60 / 104

A (1) > (1) < (2) >



문 문 문

▲□ > < ≥ >



문 > 문

A (1) > (1) < (2) >



문 문 문

▲□ > < ≥ >



→

æ

64 / 104

< 4 2 > < 2 >



■ ● ■ つへで , 2012 65 / 104

A (1) > (1) < (2) >



문 > 문

▲□ > < ≥ >



문 문 문

67 / 104

▲□ > < ≥ >



-

A (1) > (1) < (2) >

68 / 104

æ



문 > 문

69 / 104

▲□ > < ≥ >



문 > 문

▲□ > < ≥ >



ъ

æ

・日・ ・ヨ・・



문 > 문

▲□ > < ≥ >



문 문 문

▲□ > < ≥ >



문 > 문

74 / 104



→

2

75 / 104



문 문 문

▲□ > < ≥ >



문 > 문

77 / 104

・ 回 ト ・ ヨ ト ・



문 문 문

▲□ > < ≥ >



→

▲□ > < ≥ >

79 / 104

2



э

A (1) > (1) < (2) >

80 / 104

2



문 문 문

▲□ > < ≥ >



→

2

82 / 104



문 > 문

83 / 104

▲ I → ▲ Ξ



문 문 문

▲□ > < ≥ >



→

2

85 / 104



3

2

86 / 104

A (1) > (1) < (2) >



→

2

87 / 104



문 문 문

▲□ > < ≥ >



문 > 문

89 / 104

▲ □ ► < Ξ</p>



문 > 문

▲□ > < ≥ >



문 문 문

▲□ > < ≥ >



문 > 문

・ 回 ト ・ ヨ ト ・



문 문 문

▲□ > < ≥ >



문 문 문

94 / 104



■ ► ■ つへへ , 2012 95 / 104

▲ □ ► < Ξ</p>



문 문 문

96 / 104



문 문 문

▲□ > < ≥ >



э

・ 回 ト ・ ヨ ト ・

98 / 104

2



문 > 문

99 / 104



<ロ> (日) (日) (日) (日) (日)

æ



-∢≣⇒

2

101 / 104

< 4 2 > < 2 >



<ロ> (日) (日) (日) (日) (日)

102 / 104

æ



<ロ> (日) (日) (日) (日) (日)

103 / 104

æ



-∢≣⇒

< 4 2 > < 2 >

104 / 104

2