EFFECT OF COSMIC MICROWAVE BACKGROUND ON X-RAY RADIATION OF HIGH REDSHIFT JETS

Kathryn McKeough¹

Aneta Siemiginowska², Vinay Kashyap² & Nathan Stein³

- 1. Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15289, USA
- Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138, USA
- 3. Harvard University, 1 Oxford St, Cambridge MA 02318, USA

Introduction & Background

□ Extragalactic jets morphology → physical structure and emission sites

Image courtesy of: cxc.harvard.edu

Introduction & Background

- Inverse Compton (IC) Scattering
- Cosmic Microwave Background (CMB) relativistic velocity creates higher energy density in jet frame

Images courtesy of: venables.asu.edu , map.gsfc.nasa.gov

Introduction & Background

Chandra X-ray Observatory

Increased known X-ray jets from a few to 120
 Highest angular resolution (<1/2 arcseconds)

Image courtesy of: Siemiginowksa 2003; www.physics.udel.edu

Motivation

- Current ways of detecting X-ray jets:
 - CIAO algorithms: wavdetect¹, vptdetect² & celldetect
 - By eye using smoothing and radio contours³
- Low-Count Image Reconstruction and Analysis (LIRA)
 - Bayesian analysis
 - More quantitative way to detect finite jet features

- (1) Freeman et al. 2002
- (2) Ebeling & Wiedenmann 1993
- (3) Cheung et al.2012
- (4) Conners & van Dyke 2007

Goal

To study effects of the IC effect due to CMB scattering on X-ray jet radiation in high redshift quasars by focusing on quantitative detection of X-ray jets and exploring the X-ray to radio emission properties.

X-Ray Sources

- Chandra X-ray Observatory with ACIS-S
- 11 quasars
- Jets detected by radio
- 2.1 < z < 4.72

LIRA - Statistical Methods

Bayes Theorem

$$p(\Lambda | \mathbf{X}) = \frac{\mathbf{p}(\mathbf{X} | \Lambda) \mathbf{p}(\Lambda)}{\mathbf{p}(\mathbf{X})}$$

Multiscale Component

- Two Poisson processes:
 - Predicted by known point source
 - Unknown secondary structure
- Markov Chain Monte Carlo

LIRA - Application to X-ray Images

INPUT:

- Observed image
- 5x Null Simulations
- Baseline Model
- D PSF
- Start Matrix

OUTPUT:

Multiscale counts

Regions of Interest ROI

Significance Test

Multiscale counts too great to occur through statistical fluctuations Multiscale component is better fit to real data than null simulations

Reject null model & Claim jet detection

10 Significant Jet Detections

Significance Test

Type I error: alpha= 0.003 Type II error: beta= 0.5

GB 0730+257 Distributions of multiscale counts in ROIs

Jet v. Quasar X-ray Emission

r (jet feaures)= 0.513

Lorentz Factor v. Redshift

Max: r = 0.332 Min: r = 0.361

Luminosity Ratio (L_x / L_R)

r = 0.737

Ζ

Conclusion

- Detected several jet features using LIRA
- No relationship between intensity of jet/quasar emissions and redshift
- Calculation of jet beaming factors in high redshift
- Radio/X-ray luminosity consistent with CMB predictions

Aknowledgements

This work is supported in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851 and by the Smithsonian Institution.

This research has made use of data obtained from the Chandra Data Archive and the Chandra Source Catalog, and software provided by the Chandra X-ray Center (CXC) in the application packages CIAO, ChIPS, and Sherpa.

The Proposers' Observatory Guide contains a detailed overview of the spacecraft and Science Instruments, general information required to write a proposal, as well as instructions for using proposal tools and simulating data. Last Updated 12/13/2012.

This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

We thank Teddy Cheung for providing the VLA radio maps and Dan Harris for insightful discussion and comments.

We thank David van Dyk for useful comments and help with understanding LIRA and its outputs.

We remember Alanna Connors (1956-2013), who was instrumental in the development of LIRA and its use for testing significances of features.

References

- Cheung, C. C., Stawarz, L., Siemiginowska, A., et al. 2012, ApJ, 756, L20
- Cheung, C. C. 2004, ApJ, 600, L23
- Condon, J. J., Cotton, W. D., Greisen, E. W., et al. 1998, AJ, 115, 1693
- Connors, A., & van Dyk, D. A. 2007, Statistical Challenges in Modern Astronomy IV, 371, 101
- Ebeling, H., & Wiedenmann, G. 1993, Phys. Rev. E, 47, 704
- Esch, D. N., Connors, A., Karovska, M., & van Dyk, D. A. 2004, ApJ, 610, 1213
- Freeman, P. E., Kashyap, V., Rosner, R., & Lamb, D. Q. 2002, ApJS, 138, 185
- Harris, D. E., & Krawczynski, H. 2002, ApJ, 565, 244
- Harris, D. E., & Krawczynski, H. 2006, ARA&A, 44, 463
- Kashyap, V. L., van Dyk, D. A., Connors, A., et al. 2010, ApJ, 719, 900
- Siemiginowska, A., Smith, R. K., Aldcroft, T. L., et al. 2003, ApJ, 598, L15
- Tanner, M. A. & Wong, W. H. 1987, Journal of the American Statistical Association, 82:528-550
- Wright, E. L. 2006, PASP, 118, 1711

Multiscale Representation

(reproduced from Esch 2004)

Properties of Jet Features v Quasar

Source Name	z	Region	Jet Strength ¹	Source Intensity ²
GB 1428 + 4217	4.72	qso^3	69.20	2236
		jet	3.81	2236
${ m GB}\ 1508{+}5714$	4.3	knot	98.36	5139.5
		qso ³	88.78	5139.5
0730 + 257	2.686	3	6.11	269
		4	14.26	269
1311-270	2.260	3	8.79	920
1318 + 113	2.179	3	8.87	570
J1834+612	2.274	13	51.86	2513.9
0833 + 585	2.101	knot1	8.32	623
		knot2	9.45	623
J1421-0643	3.689	4.87	98	
		knot2	11.24	98

¹Average multiscale counts after burn-in for regions of interest that have signifigant jet features

²Intensity of the source according to the baseline (null) model in counts. We assume that the exposure maps are uniform within the emasured quasars/feature regions.

³These regions are ignored in final discussion because they contain the point source represented by the baseline matrix (null model).

Beaming Parameters

Table 8: B	eaming	Parameters	of	Jet	Features
------------	--------	------------	----	-----	----------

Source Name	z	Region	$\mathrm{Max}\;\theta$	Γ Range ¹
${ m GB}\ 1428{+}4217$	4.72	jet	7.5	3.8 - 6.5
${ m GB}\ 1508{+}5714$	4.3	knot	8.0	3.7 - 6.3
0730 + 257	2.686	3	12.0	2.5 - 4.0
		4	17.5	1.8 - 2.9
1311-270	2.260	3	16.25	1.9 - 3,0
1318 + 113	2.179	3	16.25	1.9 - 3.0
0833 + 585	2.101	knot1	5.75	5.0 - 9.42
		knot2	7.25	3.9-6.4
J1421-0643	3.689	knot1	5.25	5.3 - 8.7
		knot2	7.0	4.1 - 7.5

Luminosity of Jet Features: Xray v Radio

		v			
Source Name	z	Region	$L_X^{(1)}$	$L_{R}^{(2)}$	$C_N^{(3)}$
			$[10^{44} \frac{ergs}{s}]$	$[10^{44} \frac{ergs}{s}]$	
GB 1428+4217	4.72	jet	8.19	0.035	1.12
GB 1508+5714	4.3	knot	5.42	0.022	0.63
0730 + 257	2.686	3	2.27	0.667	0.08
		4	1.61	2.584	0.03
1311-270	2.260	3	0.954	0.620	0.09
1318 + 113	2.179	3	0.560	5.945	0.01
0833 + 585	2.101	knot1	4.60	0.053	1.15
		knot2	2.97	0.036	1.96
J1421-0643	3.689	knot1	34.8	0.081	1.06
		knot2	14.4	0.039	1.65

$$R_{exp} = (4 \times 10^{-13} (1+z)^4 (1+u'_j)^2 [\Gamma^2 - (1/4)]) / (B'_{eq}^2 / 8\pi)$$

¹X-ray luminosity

²Radio luminosity at 4.85 GHz. They were estimated from their original observed frequency using the index for the observed synchrotron spectrum $\alpha = 0.8$.

³Normalization constant for CMB radiation. A function of the beaming parameters (Γ , θ) and the equipartition magnetic field.

□ M87 Jet

<u>http://cxc.harvard.edu/newsletters/news_13/jets.html</u>