Dark Sources Detection

Lazhi Wang

Department of Statistics, Harvard University

April 16, 2013

Introduction: Data and Project Goal

- Data:
 - *Y_i*, observed photon counts, contaminated with background in a source exposure.
 - X, observed photon counts in the exposure of pure background .
- Goals of the Project:
 - To develop a fully Bayesian model to infer the distribution of the intensities of all the sources in a population
 - To identify the existence of dark sources in the population

A Brief Review: Bayesian Model

• Level I model:

$$egin{aligned} X|\xi \sim \textit{Pois}(\xi), \ Y_i &= Y_{iB} + Y_{iS}, ext{ where } Y_{iB}|\xi \sim \textit{Pois}(a_i\xi), \ Y_{iS}|\lambda_i \sim \textit{Pois}(b_i\lambda_i) \sim egin{cases} \delta_0, & ext{if } \lambda_i = 0, \ \textit{Pois}(b_i\lambda_i), & ext{if } \lambda_i \neq 0. \end{aligned}$$

- ξ is the background intensity,
- λ_i is the intensity of source *i*,
- *a_i* is ratio of source area to background area (known constant),
- *b_i* is the telescope effective area (known constant).

A Brief Review: Bayesian Model

• Level II model:

$$\lambda_i | \alpha, \beta, \pi \begin{cases} = 0, & \text{with probability } 1 - \pi; \\ \sim \text{Gamma}(\alpha, \beta), & \text{with probability } \pi. \end{cases}$$

• Level III model:

 $P(\alpha, \beta, \pi) \propto P(\alpha, \beta).$

Weakly Informative Prior on α, β

- \bullet The prior distribution of α,β needs to be proper
- We do not want the proper prior to be very informative
- Let $\mu = \frac{\alpha}{\beta}, \theta = \frac{\alpha}{\beta^2}$ be the mean and variance parameters of the Gamma distribution.
- Weakly informative prior on μ, θ :

$$egin{split} \mathcal{P}(\mu) \propto rac{1}{1+\left(rac{\mu-20}{20}
ight)^2}, & \mathcal{P}(heta) \propto rac{1}{1+\left(rac{ heta-1000}{1000}
ight)^2} \end{split}$$

Weakly Informative Prior on α, β

Identifying the Existence of Dark Sources

• Hypothesis Testing:

$$H_0: 1 - \pi = 0, \quad H_a: 1 - \pi > 0.$$

• H_0 corresponds to M_0 with the second level

$$\lambda_i | \alpha, \beta \sim \text{Gamma}(\alpha, \beta)$$

• H_a corresponds to M_a with the second level

$$\lambda_i | \alpha, \beta, \pi \begin{cases} = 0, & \text{with probability } 1 - \pi; \\ \sim \text{Gamma}(\alpha, \beta), & \text{with probability } \pi. \end{cases}$$

Hypothesis Testing

• Likelihood Ratio Test Statistics:

$$R = \frac{L_{a}(\hat{\alpha}_{MLE}, \hat{\beta}_{MLE}, \hat{\pi}_{MLE}|Y)}{L_{0}(\hat{\alpha}_{MLE}, \hat{\beta}_{MLE}|Y)}$$

- What's the distribution of R or log(R) under H_0 ?
- p-value is used to measure how likely we are to see a value of the test statistics as extreme as the observed value under H_0 .

$$p$$
-value = $P(R \ge R^{obs}|H_0)$

The Distribution of R under H_0

- Simulate *N* data sets *Y*^{*rep*} under *H*₀ and compute *R*^{*rep*} for each of the *N* data sets.
- P-value can be approximated by

$$p-value \approx \frac{\#\{i: R_i^{rep} \ge R^{obs}\}}{N}$$

- However, we can not simulate data sets under H_0 because α and β are unknown.
- Instead, we simulate Y^{rep} ~ M₀ with α, β ~ P₀(α, β|Y^{obs}). So the resulted "p-value" is the posterior predictive p-value under the M₀.

Calculation of R: Maximum likelihood under M_0

• Likelihood under *M*₀:

$$\begin{split} \mathcal{L}_{0}(\alpha,\beta|Y^{rep}) &= \int P(Y^{rep},\lambda|\alpha,\beta) d\lambda \\ &\propto \left(\frac{\beta^{\alpha}}{\Gamma(\alpha)}\right)^{n} \prod_{i=1}^{n} \int e^{-(b_{i}+\beta)\lambda_{i}} \frac{(a_{i}\xi+b_{i}\lambda_{i})^{Y_{i}^{rep}}}{Y_{i}^{rep}!} \lambda_{i}^{\alpha-1} d\lambda_{i} \end{split}$$

- *EM* algorithm (λ 's are treated as missing data).
- In the E-step, we need to find

$$T_1^{(t)} = E_t(\sum_{i=1}^n \lambda_i | Y^{rep}) \text{ and } T_2^{(t)} = E_t(\sum_{i=1}^n \log(\lambda_i) | Y^{rep})$$

• Simulation to estimate $T_1^{(t)}$ and $T_2^{(t)}$:

Gibbs sampling: $\lambda_i^{(t)} \sim P(\lambda_i | \alpha^{(t)}, \beta^{(t)}, Y^{rep}), i = 1, \cdots, n$

Calculation of R: Maximum likelihood under M_0

Calculation of R: Maximum likelihood under Ma

- EM algorithm (λ's are treated as missing data)
- Gibbs sampling: $\lambda_i^{(t)} \sim P(\lambda_i | \alpha^{(t)}, \beta^{(t)}, \pi^{(t)}, Y^{rep})$
- However,
 - Each step in the EM algorithm is very slow
 - EM algorithm converges very slowly

Calculation of R: Maximum likelihood under M_a

13/20

A More Efficient Method to Calculate the Maximum likelihood under M_a

- Observation: for a fixed π , the *EM* converges very fast.
- A more efficient algorithm:
 - Solution Explore the space of π : fix π at a range of values $\pi_1, \pi_2, \cdots, \pi_K$ and compute the

$$L_k = L_a(\hat{\alpha}_k, \hat{\beta}_k, \pi_k | Y^{rep})$$

2 Choose k^* such that

$$k^* = \arg \max_k L_a(\hat{lpha}_k, \hat{eta}_k, \pi_k | Y^{rep})$$

Ooing the complete EM algorithm with starting points

$$\pi^{(0)} = \pi_{k^*}, \alpha^{(0)} = \hat{\alpha}_{k^*}, \beta^{(0)} = \hat{\beta}_{k^*}$$

A More Efficient Method to Calculate the Maximum likelihood under M_a

14/20

Posterior Predictive P-value

posterior predictive p-value = $P(log(R^{rep}) \ge log(R^{obs})) = 0.105$

$\mathsf{MAP}\approx\mathsf{MLE}$

Model for dealing with Overlapping Sources

$$Y_{i,j,k}^{(s)} \sim \textit{Pois}(b_{i,j,k}\lambda_{i,k}),$$

where $b_{i,j,k} = b_{i,k}c_{i,j,k}$, $b_{i,k}$ is the effective area and $c_{i,j,k}$ is the expected proportion of photons from source k counted in $Y_{i,j}$

′ 、

...

Model for dealing with Overlapping Sources

Level I Model:

$$Y_{i,j} = Y_{i,j}^{(s)} + Y_{i,j}^{(b)}, \ i = 1, \cdots, n, \ j = 1, \cdots, n_i,$$

$$Y_{i,j}^{(b)} | \xi \sim Pois(a_i \xi),$$

$$Y_{i,j}^{(s)} = \sum_{k=1}^{n_i} Y_{i,j,k}^{(s)}$$

$$Y_{i,j,k}^{(s)} | \lambda_{i,k} \sim Pois(b_{i,j,k} \lambda_{i,k}), \ k = 1, \cdots, n_i,$$

Simulation Results

35% n_i 's are 1, 5% n_i 's are 2 and 65% n_i 's are 3.

Maximum Likelihood under M_a for the Real Data

19 / 20

Posterior Distribution under M_0

$$\frac{\hat{\alpha}_{MLE}}{\hat{\beta}_{MLE}} = 7.87, \quad \frac{\hat{\alpha}_{MLE}}{\hat{\beta}_{MLE}^2} = 787,$$