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Introduction: Data and Project Goal

Data:

Yi , observed photon counts, contaminated with background in a source
exposure.
X , observed photon counts in the exposure of pure background .

Goals of the Project:

To develop a fully Bayesian model to infer the distribution of the
intensities of all the sources in a population
To identify the existence of dark sources in the population
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A Brief Review: Bayesian Model

Level I model:

X |ξ ∼ Pois(ξ),

Yi = YiB + YiS , where YiB |ξ ∼ Pois(aiξ),

YiS |λi ∼ Pois(biλi ) ∼

{
δ0, if λi = 0;

Pois(biλi ), if λi 6= 0.

ξ is the background intensity,
λi is the intensity of source i ,
ai is ratio of source area to background area (known constant),
bi is the telescope effective area (known constant).
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A Brief Review: Bayesian Model

Level II model:

λi |α, β, π

{
= 0, with probability 1− π;

∼ Gamma(α, β), with probability π.

Level III model:

P(α, β, π) ∝ P(α, β).
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Weakly Informative Prior on α, β

The prior distribution of α, β needs to be proper

We do not want the proper prior to be very informative

Let µ =
α

β
, θ =

α

β2
be the mean and variance parameters of the

Gamma distribution.

Weakly informative prior on µ, θ:

P(µ) ∝ 1

1 +
(
µ−20
20

)2 , P(θ) ∝ 1

1 +
(
θ−1000
1000

)2
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Weakly Informative Prior on α, β
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Frequency Coverage: Simulation Setting 1

Observed data Y
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Frequency Coverage: Simulation Setting 1
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Frequency Coverage: Simulation Setting 2

Observed data Y
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Frequency Coverage: Simulation Setting 2
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Identifying the Existence of Dark Sources

Hypothesis Testing:

H0 : 1− π = 0, Ha : 1− π > 0.

H0 corresponds to M0 with the second level

λi |α, β ∼ Gamma(α, β)

Ha corresponds to Ma with the second level

λi |α, β, π

{
= 0, with probability 1− π;

∼ Gamma(α, β), with probability π.
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Hypothesis Testing

Likelihood Ratio Test Statistics:

R =
La(α̂MLE , β̂MLE , π̂MLE |Y )

L0(α̂MLE , β̂MLE |Y )

What’s the distribution of R or log(R) under H0?

p-value is used to measure how likely we are to see a value of the test
statistics as extreme as the observed value under H0.

p-value = P(R > Robs |H0)
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The Distribution of R under H0

Simulate N data sets Y rep under H0 and compute R rep for each of
the N data sets.

P-value can be approximated by

p-value ≈
#{i : R rep

i > Robs}
N

However, we can not simulate data sets under H0 because α and β
are unknown.

Instead, we simulate Y rep ∼ M0 with α, β ∼ P0(α, β|Y obs). So the
resulted “p-value” is the posterior predictive p-value under the M0.

11 / 20



Introduction
Bayesian Model

New Results

Calculation of R : Maximum likelihood under M0

Likelihood under M0:

L0(α, β|Y rep) =

∫
P(Y rep, λ|α, β)dλ

∝
(
βα

Γ(α)

)n n∏
i=1

∫
e−(bi+β)λi

(aiξ + biλi )
Y rep
i

Y rep
i !

λα−1
i dλi

EM algorithm (λ’s are treated as missing data).

In the E-step, we need to find

T
(t)
1 = Et(

n∑
i=1

λi |Y rep) and T
(t)
2 = Et(

n∑
i=1

log(λi )|Y rep)

Simulation to estimate T
(t)
1 and T

(t)
2 :

Gibbs sampling: λ
(t)
i ∼ P(λi |α(t), β(t),Y rep), i = 1, · · · , n
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Calculation of R : Maximum likelihood under M0
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Calculation of R : Maximum likelihood under Ma

EM algorithm (λ’s are treated as missing data)

Gibbs sampling: λ
(t)
i ∼ P(λi |α(t), β(t), π(t),Y rep)

However,

Each step in the EM algorithm is very slow
EM algorithm converges very slowly

13 / 20



Introduction
Bayesian Model

New Results

Calculation of R : Maximum likelihood under Ma
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A More Efficient Method to Calculate the Maximum
likelihood under Ma

Observation: for a fixed π, the EM converges very fast.

A more efficient algorithm:
1 Explore the space of π: fix π at a range of values π1, π2, · · · , πK and

compute the
Lk = La(α̂k , β̂k , πk |Y rep)

2 Choose k∗ such that

k∗ = arg max
k

La(α̂k , β̂k , πk |Y rep)

3 Doing the complete EM algorithm with starting points

π(0) = πk∗ , α(0) = α̂k∗ , β(0) = β̂k∗
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A More Efficient Method to Calculate the Maximum
likelihood under Ma
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Posterior Predictive P-value

histogram of la(α̂,β̂,π̂|y
rep) - l0(α̂,β̂|y

rep)
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log(R) = 0.877 for the real data

posterior predictive p-value = P(log(R rep) > log(Robs)) = 0.105
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MAP ≈ MLE

α̂MLE

β̂MLE

= 20.22,
α̂MLE

β̂2MLE

= 1451.2, 1− π̂MLE = 0.624.

EM Posterior under the null
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Model for dealing with Overlapping Sources

Y
(s)
i ,j ,k ∼ Pois(bi ,j ,kλi ,k),

where bi ,j ,k = bi ,kci ,j ,k , bi ,k is the effective area and ci ,j ,k is the expected
proportion of photons from source k counted in Yi ,j
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Model for dealing with Overlapping Sources

Level I Model: Yi ,j = Y
(s)
i ,j + Y

(b)
i ,j , i = 1, · · · , n, j = 1, · · · , ni ,

Y
(b)
i ,j |ξ ∼ Pois(aiξ),

Y
(s)
i ,j =

ni∑
k=1

Y
(s)
i ,j ,k

Y
(s)
i ,j ,k |λi ,k ∼ Pois(bi ,j ,kλi ,k), k = 1, · · · , ni ,
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Simulation Results

35% ni ’s are 1, 5% ni ’s are 2 and 65% ni ’s are 3.
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Maximum Likelihood under Ma for the Real Data

Back
19 / 20



Posterior Distribution under M0

posterior draws of alpha/beta
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