Using Bayes Factors for Model Selection in High-Energy Astrophysics

Shandong Zhao

Department of Statistic, UCI

April, 2013

Model Comparison in Astrophysics

• Nested models (line detection in spectral analysis):

- Non-nested models: *Powerlaw* vs *Bremsstrahlung* for the red curve.
- Bottom line: need more than a confidence interval on "nesting parameter" to formally compare or select a model.

Spectral Analysis in High Energy Astrophysics

- **Goal:** Study the distribution of the energy of photons originating from a source (We use a Poisson model)
- The photon detector
 - Ocunts photons into energy bins, with energy E_1, \ldots, E_J .
 - May misclassify photons into wrong energy bins. (*Redistribution Matrix, M*)

Has sensitivity that varies with energy. (effective area, d)

• Is subject to **background contamination**, θ^{B}

- Mathematically: $\Xi(E_i) = \sum_{j \in \mathcal{J}} M_{ij} \Lambda(E_j) d_j + \theta_i^B$
- We ignore 2-4 in our initial simulations.

Model Selection in Spectral Analysis

The spectral model can often be formulated as a finite mixture model. A simple form consists of a continuum and an emission line: Λ(*E_i*) = α*E_i^β* + ωI_{μ==i}

• The line detection problem:

$$\begin{aligned} & \mathbf{H}_0: \ \ \Lambda(\boldsymbol{E}_i) = \alpha \boldsymbol{E}_i^{\beta} \\ & \mathbf{H}_a: \ \ \Lambda(\boldsymbol{E}_i) = \alpha \boldsymbol{E}_i^{\beta} + \omega \mathbf{I}_{\mu==i} \end{aligned}$$

Challenges with Spectral Model Selection

- A naive method is to use the likelihood ratio test. However, the standard asymptotics of the LRT statistic do not apply.
 - μ has **no value** under H₀.
 - ω must be non-negative under H_a while its target tested value under H₀, *zero*, is on the boundary of the parameter space.
- For "precise null hypotheses", *p*-values bias inference in the direction of false discovery.
 - When compared to BF or Pr(H₀|Y), *p*-values vastly overstate the evidence for H₁ (even using the prior most favorable to H₁)
 - Computed given data as extreme or more extreme than *Y*, which is *much stronger evidence* for *H*₁.
- Protassov et al. (ApJ, 2002) address the first set of concerns by simulating the null dist'n of the Likelihood ratio statistic and use posterior predictive *p*-values (PPP) instead.

Bayesian Model Selection

• **Bayesian Evidence:** The average likelihood over the prior distribution of the parameters under a specific model choice:

$$p(\mathbf{Y}|M) \equiv \int p(\mathbf{Y}|M, \theta) p(\theta|M) d\theta$$

where Y, θ and M are the observed data, parameters, and underlying models respectively.

• **Bayes Factor (BF):** The ratio of candidate model's Bayesian Evidence:

$$B_{01} \equiv \frac{p(\boldsymbol{Y}|M_0)}{p(\boldsymbol{Y}|M_1)}$$

Interpretation of BF

• BF and posterior probability ratio.

$$\frac{p(M_0|\mathbf{Y})}{p(M_1|\mathbf{Y})} = B_{01} \frac{p(M_0)}{p(M_1)}$$

• Interpretation against the Jeffreys' scale.

BF	Strength of evidence (toward M_0)
$1 \sim 3$	Barely worth mentioning
$3 \sim 10$	Substantial
$10\sim 30$	Strong
$30 \sim 100$	Very strong
> 100	Decisive

Disadvantage of the Bayes Factor

- Assumes that one of the two models is true.
- Computation could be hard.
- Sensitive to prior specification. How does the prior dependency of BF compare to that of PPP?
- BF is ill-defined with an improper prior.
 Non-informative prior for parameters in common?

The Computation of BF

- Task is to compute $p(\mathbf{Y}|M) \equiv \int p(\mathbf{Y}|M, \theta) p(\theta|M) d\theta$.
 - *Gaussian Approximation.* If the posterior dist'n is approximately Gaussian.
 - Monte Carlo Method.

If could get a sample from either the prior or posterior dist'n.

- Nested Sampling.
- None of the method is perfect for spectral analysis.
 - The joint posterior dist'n has many local modes.
 - Most Monte Carlo methods are inefficient.
 - Nested Sampling has bias up to 25% in simulation studies.

A New Method

• On the other hand,
$$B_{01} = \frac{p(M_0|\mathbf{Y})}{p(M_1|\mathbf{Y})} / \frac{p(M_0)}{p(M_1)}$$

- Computing the ratio of the posterior probability is not easy.
- Challenge is to sample from (*I_{M₀}*, Θ₀, *I_{M₁}*, Θ₁), where Θ₀ and Θ₁ might have different parameter settings and dimensions.

Example: Θ_0 for Powerlaw while Θ_1 for Bremsstrahlung.

• It's usually straightforward, however, to sample from $p(\Theta_0|M_0, Y)$ and $p(\Theta_1|M_1, Y)$, seperately.

Jump between the Parameter Space

Assume we run 2*K* MCMC chains with half of them starting from Θ_0 and Θ_1 respectively. The parameter space for each chain is (I_M, Θ_M) .

- Run usual M-H algorithm for each chain with $q_0(\theta_0^{old}, \theta_0^{new})$ and $q_1(\theta_1^{old}, \theta_1^{new})$ being the proposal dist'n for sampling within $p(\Theta_0|M_0, Y)$ and $p(\Theta_1|M_1, Y)$, respectively.
- For chain *i*, randomly pick one of the other chains, *j*, and propose a new draw based on its corresponding proposal dist'n. Doing so is equivalent to use the proposal dist'n of:

 $\frac{1}{K-1}\sum_{j\neq i} q^j(\theta^j, \theta^{new})$, where $q^j(\theta^j, \theta^{new}) = 0$ if $I_M(\theta^j) \neq I_M(\theta^{new})$

Some combine all the chains, compute the ratio of I_{M_0}/I_{M_1} as the Monte Carlo estimate of the posterior probability ratio.

Why It Works

- The parallel MCMC algorithm was first introduced to help MCMC chain jump between modes.
- For step 2, the acceptance rate is $\frac{p(\theta^{new}|M(\theta^{new}), Y)}{p(\theta^{i}|M(\theta^{i}), Y)} / \frac{\sum_{j \neq i} q^{j}(\theta^{j}, \theta^{new})}{\sum_{j \neq i} q^{j}(\theta^{j}, \theta^{i})} \bigcirc \bigcirc$
- Challenge now is to find a good local proposal dist'n.

Is Improper Prior Always Improper?

• If θ^* only shows up in M_1 , using improper prior for θ^* is improper.

$$p(\boldsymbol{Y}|\boldsymbol{M}_{1}) \equiv \int p(\boldsymbol{Y}|\boldsymbol{\theta}^{\star}, \tilde{\boldsymbol{\theta}}) p(\tilde{\boldsymbol{\theta}}|\boldsymbol{\theta}^{\star}) p(\boldsymbol{\theta}^{\star}) d\tilde{\boldsymbol{\theta}} d\boldsymbol{\theta}^{\star}, \ \Theta^{1} = (\boldsymbol{\theta}^{\star}, \tilde{\boldsymbol{\theta}})$$

• What if θ^* is one of the parameters in common? In the line detection problem with β, μ being fixed and assuming $p(\frac{\omega}{\alpha}) \sim U(0, \eta)$,

$$H_0: \Lambda(E_i) = \alpha E_i^{\beta}$$
 vs $H_a: \Lambda(E_i) = \alpha E_i^{\beta} + \omega I_{\mu==i}$

The BFs under the prior of $p(\alpha) \sim U(0, N)$ converge as $N \to \infty$, to the BF under the prior of $p(\alpha) \propto 1$.

• What about the priors for ω and μ ?

ŀ

The Example

$${\it f} \, {\it p}(lpha) \propto {\it 1}, \ {\it BF} = \eta \Big/ \int_0^\eta rac{\left(1 + ilde{\omega}/E_\mu^{-eta}
ight)^{Y_\mu}}{\left(1 + ilde{\omega}/\Sigma E_i^{-eta}
ight)^{\Sigma Y_i+1}} d ilde{\omega}$$

If $p(\alpha) \sim U(0, N)$,

$$BF_{N} = \eta \bigg/ \int_{0}^{\eta} \frac{\left(1 + \tilde{\omega}/E_{\mu}^{-\beta}\right)^{Y_{\mu}}}{\left(1 + \tilde{\omega}/\Sigma E_{i}^{-\beta}\right)^{\Sigma Y_{i}+1}} \cdot \frac{\Pr(\tilde{z} \leq N)}{\Pr(z \leq N)} d\tilde{\omega}$$

where $z \sim \text{Gamma}(\Sigma Y_i + 1, \frac{1}{\Sigma E_i^{-\beta}}), \tilde{z} \sim \text{Gamma}(\Sigma Y_i + 1, \frac{1}{\Sigma E_i^{-\beta} + \tilde{\omega}})$

The Example, cont'd

Because

$$\frac{\left(1+\tilde{\omega}/E_{\mu}^{-\beta}\right)^{\mathbf{Y}_{\mu}}}{\left(1+\tilde{\omega}/\Sigma E_{i}^{-\beta}\right)^{\Sigma Y_{i}+1}} \cdot \Pr(\tilde{z} \leq N) \leq \frac{\left(1+\tilde{\omega}/E_{\mu}^{-\beta}\right)^{\mathbf{Y}_{\mu}}}{\left(1+\tilde{\omega}/\Sigma E_{i}^{-\beta}\right)^{\Sigma Y_{i}+1}}$$

$$\begin{split} \lim_{N \to \infty} BF_{N} &= \lim_{N \to \infty} \int_{0}^{\eta} \frac{\left(1 + \tilde{\omega}/E_{\mu}^{-\beta}\right)^{Y_{\mu}}}{\left(1 + \tilde{\omega}/\Sigma E_{i}^{-\beta}\right)^{\Sigma Y_{i}+1}} \cdot \Pr(\tilde{z} \leq N) d\tilde{\omega} / \lim_{N \to \infty} \Pr(z \leq N) \\ &= \int_{0}^{\eta} \lim_{N \to \infty} \frac{\left(1 + \tilde{\omega}/E_{\mu}^{-\beta}\right)^{Y_{\mu}}}{\left(1 + \tilde{\omega}/\Sigma E_{i}^{-\beta}\right)^{\Sigma Y_{i}+1}} \cdot \Pr(\tilde{z} \leq N) d\tilde{\omega} \\ &= BF \end{split}$$

where the second "=" holds by Lebegue dominated convergence theorem.

How to Assign a Proper Prior

- Compared to α and β, priors for ω and μ have much more influence on the BF. And they have to be proper.
- Different priors on ω and μ can totally change your decision based on BF. For example, with everything else held the same, under p(μ) ~ N(μ₀, σ₁), BF supports M₀ under p(μ) ~ N(μ₀, σ₂), BF can't distinguish btwn the models under p(μ) ~ N(μ₀, σ₃), BF supports M₁
- Is the prior dependency always a problem?
- How does the prior influence of BF compare to that of the PPP?

Simulation Study Design

• *Simulation Models:* We compare a power law continuum with one delta function emission line model, with 1000 energy bins equally spaced between 0.3 to 7(keV).

$$\begin{aligned} \mathbf{H}_{0} : \quad \Lambda(\boldsymbol{E}_{i}) &= \alpha \boldsymbol{E}_{i}^{\beta} \\ \mathbf{H}_{a} : \quad \Lambda(\boldsymbol{E}_{i}) &= \alpha \boldsymbol{E}_{i}^{\beta} + \omega \mathbf{I}_{\mu = = i} \end{aligned}$$

with $i = 1 \sim 1000$ and $\alpha = 50, \beta = 1.69$.

- The prior influence of α and β are negligible compared to that of ω and μ. Thus, they will be fixed in the simulation study.
- Assume:

$$\omega \sim U(0, \eta); \mu \sim \text{discrete}[N(\mu_0, \sigma^2)]$$

Using a Gamma prior for ω will have similar results.

The Non-Gaussian Posterior Dist'n

- The ordinary Gibbs breaks down here because the subchain for μ does not move from its starting value, regardless of what it is. We use the **PCGS** to draw posterior samples.
- 5000 posterior draws with $\alpha = 50, \beta = 1.69, \omega = 10, \mu = 150.$

To Study The Prior Influence

- Fix α and β throughout. Calculate BF by numerical integration.
- The "true" emission line is set at bin 150, or $\mu = 1.3$ keV.
- The intensity from the continuum in this bin is 32.
- We control the strength of data support toward H_a by altering the observed counts at 1.3 keV.

Prior Settings

 Recall ω ~ U(0, η). We control its strength by changing its upper range η.

• η will range from 10 to 108 with a step size of 2.

- For μ , because $\mu \sim \text{discrete}[N(\mu_0, \sigma^2)]$, we control both its mode μ_0 and s.d σ .
 - We use two different value for μ_0 , 1.3keV and 1.97keV respectively (150 and 250 in terms of bin number).
 - For σ , it will range from 1 to 99 (bin width) with a step size of 2.

Visualize The Prior Influence

We will plot the heatmap of $\log(BF)$ against η , μ_0 , and σ on the simplified Jeffrey's scale.

BF	$\log(BF)$	Evidence
> 30	> 1.5	Very strong to overwhelming for H_0
[3, 30]	[0.5, 1.5]	Substantial to strong for H_0
[-3,3]	[-0.5, 0.5]	Not worth mentioning
[-30, -3]	[-1.5, -0.5]	Substantial to strong for H_a
< -30	< -1.5	Very strong to overwhelming for H_a

Results: A Weak Spectral Line

Diffuse or misplaced priors weaken evidence

Results: A Stronger Spectral Line

Diffuse or misplaced priors could completely change the decision

Results: Stronger Prior

We use a stronger prior for μ : uniform prior with a span of 11 \sim 51 bin width centered at the true location.

Take Home Messages

- If the data is dominantly strong, we probably don't need BF.
- The priors can reflect different scientific questions
 - $p(\mu)$: where to look for the lines
 - p(ω): how strong are the lines that we're looking for
- Even for likelihood ratio test, looking for lines
 - at a fixed bin location,
 - within a restricted region,
 - over the whole energy range

will return tests with varied strength of the evidence.

• How does the prior dependency of BF compared to the PPP?

Compare BF with P-values

ppp-values (based on 1000 MC samples)

Y(E=1.3keV)	32+17	32+22	32+28
H _A : known line location	0.008	0.002	0.000
H_A : fitted line location(0.3-7.0keV)	0.539	0.184	0.006

Compare BF with P-values, cont'd

Prior on line intensity: $\omega \sim U(0, \eta)$ and $\mu \sim U(1.3 \pm \kappa)$.

- H_A: known line location
 - ppp-value = 0.002.
- H_A: Unknown line location
 - ppp-value = 0.184.

minimum Bayes Factor = 0.044 (span=0.07, $\eta = 30$)

Both ppp-value and Bayes Factor depend on where we look for line.

Can we calibrate the dependence?

Compare BF with P-values, cont'd

Assuming $P(M_0)/P(M_1) = 1$, we plot the PPP against $P(M_0|Y)$

Evidence decreases with more diffuse prior, for both.

BFs are more conservative.

Prior on $\boldsymbol{\mu}$

- let's decide where to look,
- penalize us for looking too many place. i.e., look elsewhere effect
- Sensitivity of BF to prior for μ is sensible.

A Bayesian Strategy for Line Search, Summary

Bayes Factors for Detection:

$$\mathsf{BF} = \frac{p_0(Y)}{p_A(Y)} = \frac{\int p(Y|\theta, \omega = 0)p(\theta)d\theta}{\int p(Y|\theta, \mu, \omega)p(\theta, \mu, \omega)d\theta d\mu d\omega}$$

Setting priors

- $\theta = (\alpha, \beta)$: Non-informative / diffuse priors.
 - μ : Where we want to look for the line.
 - ω : How strong of a line do we want to look for?

Narrower prior ranges yield stronger results.

If strong lines are easy to see, maybe we can confine attension to weak lines.