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Missing Data

Problem

Classifying objects based on their features (color and
magnitude) dates back in the 19th century.

Automatic classification

Recently became sophisticated
Necessary due to the exponential growth of astronomical data.

In time-domain astronomy → of light-curves

Use features of the light-curves
Apply sophisticated machine learning to classify objects in a
multidimensional features space, provided there are enough
examples to learn from (training).
After almost a decade since the first appearance of automatic
classification methods, many of those methods have produced
and continue to produce high fidelity catalogs

Kim et al 2011,2012, Bloom 2011, Richards 2011, Debosscher 2007, Wachman 2009, Wang 2010
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Problem

Best to use as many available catalogs as possible (x-ray, u-band,
time series catalogs)

Catalogs are taken with different instruments, bandwidths,
locations, times, etc,

The intersection of these catalogs is smaller than any single
catalog → resulting multi-catalog contains missing values.

Traditional classification methods can not deal with the resulting
catalogs
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Introduction

Fill missing data using Monte Carlo approaches. Each missing
value is drawn from a distribution that is determined from all
objects in the training set.
This approach totally ignores the relationship amongst the
variables.
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Bayesian Networks (BN)

A Bayesian network (BN) is a probabilistic graphical model that
represents dependency relationships among a set of variables.
One of the main advantages of the BN factorization is that each of
the factors involves a smaller number of variables, where it is easier
to estimate.
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Bayesian Networks (BN)

[t] Let S = {x1, . . . , xn} be a set of data instances, each one described with a set of D variables
{F1, . . . , FD}. Each instance xi is represented as a vector xi = {F i

1, . . . , F
i
D}.

BNs can represent the joint probability distribution P(F1, . . . , FD ) of dataset S as a product of
factors, where each factor is a conditional probability distribution of each node given its parents in
the BN:

P(S) =

n∏
i=1

P(xi ) =

n∏
i=1

P(F i
1, . . . , F

i
D ) =

n∏
i=1

D∏
j=1

P(F i
j |Pa

i
BN (Fj ))

where PaBN (Fj ) represents the set of parents of variable Fj in the BN and PaiBN (Fj ) indicate that
parents of feature Fj are instantiated in the values of xi

joint probability distribution can be factorized according to the BN as:

P(F1, . . . , F5) = P(F1|F4)P(F2)P(F3|F5)P(F4)P(F5|F2, F4)
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Inferences

Suppose we have an object with missing values F5 and F2.

Estimate the most probable value for variable F5 given the
observed values for F1,F3,F4, we can calculate
P(F5|F1,F3,F4) as:
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Factorizing

P(F5|F1, F3, F4) =
P(F1, F3, F4, F5)

P(F1, F3, F4)

=

∑
F2

P(F1, F2, F3, F4, F5)

∑
F2,F5

P(F1, F2, F3, F4, F5)

=

∑
F2

P(F1|F4)P(F2)P(F3|F5)P(F4)P(F5|F2, F4)

∑
F2,F5

P(F1|F4)P(F2)P(F3|F5)P(F4)P(F5|F2, F4)

=

P(F1|F4)P(F3|F5)P(F4)
∑
F2

P(F2)P(F5|F2, F4)

P(F4)P(F1|F4)
∑
F2,F5

P(F3|F5)P(F2)P(F5|F2, F4)
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Pusing in

“Pushing in” the factors in the sums is known as variable
elimination (Pearl et el 94)

The simplest exact inference algorithm.
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Juntion Tree

A junction tree is an undirected graph where each node
corresponds to a set of variables in the original BN that forms a
family (a node with its parents).

The moral graph is such that two nodes are connected if either they
are directly connected in the BN or if they have a common child in
the BN.
Identify all the cliques (sets of nodes where every pair inside the set
is connected by an edge) in the moral graph. The junction tree is a
new data structure which has one node per each clique in the moral
graph, and two nodes are connected if they have at least one
common feature between them.
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Juntion Tree

Nodes send to other nodes the value of its own probability,
summing out the variables which are not included in the
destination node.

{F2,F4,F5} sends
∑

F2

∑
F5
P(F5|F2,F4) to {F4,F1}

{F2,F4,F5} sends
∑

F2

∑
F4
P(F5|F2,F4) to {F5,F3}

{F5,F3} sends
∑

F3
P(F3|F5) to {F2,F4,F5}

{F4,F1} sends
∑

F1
P(F1|F4) to {F2,F4,F5}

This process is known as ‘junction tree calibration” (Cowell
2002).
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Gaussian Nodes inference

Continuous data → Gaussian Nodes inference (Shachter
1989).
Variables not involved in the calculation of a probability can
be eliminated from the Bayesian network (barren nodes). e.g.
leaf nodes

Not so simple. Arc reversal
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Learning Bayesian Networks with complete data

Learning the network involves learning the structure (edges)
and the parameters (probability distributions on each of the
factors).
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Structure Learning with complete data

Number of possible networks structure grows exponentially
→ a greedy search strategy.

Starting with an initial random order of variables (nodes), we
add parents to the nodes incrementally and keep the parent(s)
that generates the network with the highest score.

The score of a network structure is related to how the
structure fits data.
Probability of the structure given the data, which corresponds
to apply the same factorization imposed by the structure and
use multinomial distributions over each factor. We estimate
each probability by firstly discretizing the possible values that
each feature Fi can take and then creating a
multi-dimensional histogram.
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Parameter Learning with complete data

Learning the parameters of a BN means to learn the distribution of
each of the factors given by the structure of the BN.
⇒ To learn the parameters it is necessary first to know the
structure.

Parameter estimation

Use Gaussians to model these probability distributions. We model Fj as a linear Gaussian of its

parents:

P(Fj ) = N (β0 + β
T
µ;σ2 + β

T Σβ), (1)

where the set of parents PaBN (Fj ) are jointly Gaussian N (µ; Σ). Note that µ and β are k

dimensional vectors, and the matrix Σ is k × k

To learn a Gaussian node, we first learn (i) the Gaussian
distribution of each of the parent nodes and then (ii) the set of
parameters {β0, . . . , βk ;σ} of the linear combination.
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Learning Gaussians for each parent node

We model each parent node as a mixture of Gaussians.

To estimate their distribution use Expectation Maximization
(EM) algorithm.

EM optimizes the likelihood function of a model which
depends on latent or unobserved variables.
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Learning the linear combination of parents

Log-likelihood

Having determined the distribution of each parent node, we can now estimate the distribution of each Gaussian

node Fj given its parents. Let {U1, . . . ,Uk} be the parent nodes with respective means {µ1, . . . , µk}, then

P(Fj |PaBN (Fj )) = N (β0 + β1µ1 + · · · + βkµk ;σ2). Our task is to learn the set of parameters

θFj
= {β0, . . . , βk ;σ}. To learn those parameters we optimize the log-likelihood, expressed as:

LFj
(θFj
|D) =

n∑
i=1

[
−

1

2
log(2πσ2)−

1

2σ2
(β0 + β1µ1 + βkµk − xi )

2
]
.

Setting the derivative with respect to β1, . . . , βk to zero we have the following k equations:

E [Fj · U1] = β0E [U1] + β1E [U1 · U1] + βkE [Uk · U1]

.

.

.

E [Fj · Uk ] = β0E [Uk ] + β1E [U1 · Uk ] + βkE [Uk · Uk ]

σ
2 = cov[Fj , Fj ]−

k∑
p=1

k∑
q=1

βpβq cov[Up ,Uq ]
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Learning Bayesian Networks with missing data

How to learn both the structure and the parameters under
incomplete data?

To learn the parameters with missing data, we need to previously
know the structure and to learn the structure we need to guess the
missing values.

→ This is done in a iterative method.
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Learning parameters with missing data

We assume that we already know the structure of the Bayesian
network before we start learning the distribution parameters with
missing data.
→ Optimize the log likelihood given the data.

Likelihood

• Each data point xi can be written as

xi = {xo
i , x

m
i }

Rewriting the log likelihood we have:

l(θ|xo
, xm

, z) =

n∑
i=1

C∑
j=1

zij [
n

2
log 2π +

1

2
log σj

−
1

2σ2,o
j

(xo
i − µ

o
j )2

−
1

2σ2,om
j

(xo
i − µ

o
j )(xm

i − µ
m
j )

−
1

2σ2,m
j

(xm
i − µ

m
j )2]
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Learning parameters with missing data

Likelihood

Note that in the E-step for the missing data case we need to estimate three unknown terms, zij ,

zijx
m
i , and zijx

m
i

2. Then the E-Step computes:

E [xm
i |zij = 1, xo

i , θk ] = µ
m
j +

(xo
i − µ

o
j )

σj

E [zijx
m
i |x

o
i , θ] = P(zij |xi , θ)xm

ij

E [zij (x
m
i )2|xo

i , θ] = P(zij |xi , θ)((xm
ij )2)

The M-Step for the missing case is the same as in the complete data case, the main difference is

just that the unknown values are replaced by the expectations in equations above.
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Learning the network structure with missing data

To learn the structure of a Bayesian network with missing data, we
complete the missing values and then iterate to improve these
values using the structure learned so far.

Algorithm

• Learn for each variable in {F1, . . . , FD} a univariate Gaussian Mixture GM(i) i ∈ [1 . . .D].

• Create M complete datasets D1
s , s ∈ [1 . . .M] filling the missing values of each variable Fi

with values sampled from GM(i).

• t = 1

while Convergence criteria is not achieved do

for s = 1 to M do

• From each complete dataset in D(t)
s , learn a BN, B(t)

s .

end for

• Create one Bayesian network structure B(t) as the union of all the BNs.

• Learn the parameters θ(t) using the original incomplete data and the network structure B(t)

• Use the network 〈B(t), θ(t)〉 to sample new values and create new completed datasets

D(t+1)
s .

• t = t + 1

end while
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The automatic classification model

So far, infer the missing values. Next:

Automatic classifier using the new training completed set.

Random Forest (RF) classifier

Very efficient algorithm based on decision tree models and
bagging for classification problems
Ensemble methods, appearing in machine learning literature at
the end of nineties and has been used recently in the
astronomical journals .
Quinlan 1993, Breiman 2001, Pichara 2012
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Random Forrest

The process of training or building a RF given training data is as
follows:

Let P be the number of trees in the forest and F the number
of features in each tree, both values are model parameters.

Build P sets of n samples taken with replacement from the
training set. Note that each of the P bags has the same
number of elements with the training set but less different
examples, given that the samples are taken with replacement
(The training set also has n samples).

For each of the P sets, train a decision tree using a random
sample of F features from the set of q possible features.
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Random Forrest

RF creates many linear separators, attempting to separate between
elements of different classes using some featuresand some data
points (the ones given by each of the bags).

Each of the decision trees creates one decision
The final decision is the most voted class among the set of P
decision trees

As the number of trees goes to infinity the classification error of the
RF becomes bounded and the classifier does not overfit the data.

Pavlos Protopapas Automatic classification with missing data



Missing Data

Experimental Results

To test the advantage of the model, we ask the following questions

is it possible to learn an automatic classification model that is
able to deal with missing data?

does the model outperform any model that uses a subset of
training set with complete data?

does the proposed model overcome the case where missing
data is filled using models that treat each variable
independently?
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Experimental Results

Base catalog, the MACHO catalog and extract 14 features
from each lightcurve.

Combine the MACHO catalog with other catalogs containing
magnitudes at different wavelengths.

SAGE (Meixner et al 2006)
UBVI (Piatti 2011)
2MASS (Skrutskie 2006)
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Data

Percentage of missing values on 2MASS/SAGE catalogs

Vars % of missing values
J 54%
H 54%
K 58%
m36 1%
m45 13%
m58 68%
m80 74%

Percentage of missing values on UBVI catalog

Vars % of missing values
U 49%
B 0%
V 0%
I 14%
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Data

Number of objects per class on SAGE-2MASS-UBVI training set

Class number of training objects

Non-Variables 1136
QSO 45

Be star 76
Cepheid 70

RR Lyrae 69
EB 100

LPV 337
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Results

Gaussian mixture Our model
Class Precision Recall F-Measure Precision Recall F-Measure

None Variables 0.857 0.952 0.902 0.878 0.942 0.909
Quasar 0.9 0.8 0.847 0.878 0.956 0.915

Be 0.679 0.5 0.576 0.724 0.553 0.627
Cepheid 0.805 0.886 0.844 0.785 0.886 0.832

RR-Lyrae 0.333 0.014 0.028 0.583 0.203 0.301
EB 0.5 0.25 0.333 0.525 0.31 0.39

LPV 0.919 0.938 0.928 0.925 0.947 0.935
Weighted Average: 0.821 0.851 0.826 0.846 0.863 0.848

Moreover, after training the model, we run it on the whole MACHO catalog, in order to generate a new quasar
candidate list. To evaluate the quality of the new quasar candidate list, we calculate the matching level of our list
of candidates with previous known lists.

Adding SAGE-2MASS-UBVI features Only MACHO Features
Quasar Precision 0.858 0.857

Quasar Recall 0.956 0.8
Quasar F-Score 0.896 0.828
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Conclusions

A new way of dealing with missing data

Tested on real astronomical datasets

Catalogs with missing data can be useful for automatic
classification.
Integrate catalogs improve performance
Improve accuracy of our results in previous work on quasar
detection

Considers probability dependencies between variables, that
makes possible to take advantage of the observed values, in
order to increase the accuracy of the estimation when the
number of observed values increase.
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