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Background

I High-Energy Astrophysics

I Spectral Analysis

I Calibration Products

I Scientific Goals
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High-Energy Astrophysics

I Provide understanding into high-energy regions of the
Universe.

I Chandra X-ray Observatory is designed to observe X-rays from
high-energy regions of the Universe.

I X-ray detectors typically count a small number of photons in
each of a large number of pixels.

I Spectral Analysis aims to explore the parameterized pattern
between the photon counts and energy.
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Quasar

The Chandra X-ray image of the quasar PKS 1127-145, a highly
luminous source of X-rays and visible light about 10 billion light
years from Earth.
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An Example of One Dataset

TITLE = EXTENDED EMISSION AROUND A GIGAHERTZ
PEAKED RADIO SOURCE
DATE = 2006-12-29 T 16:10:48
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Calibration Uncertainty

I Effective area records sensitivity as a function of energy.
I Energy redistribution matrix can vary with energy/location.
I Point Spread Functions can vary with energy and location.
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Incorporate Calibration Uncertainty

I Calibration Uncertainty in astronomical analysis has been
generally ignored.

I No robust principled method is available.

I Our goal is to incorporate the uncertainty by Bayesian
Methods.

I In this talk, we will focus on uncertainty in the effective area.
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Problem Description

I The true effective area curve can’t be observed.

I No parameterized form for the density of effective area curve
complicates model fitting.

I Simple MCMC is quite expensive, due to the complexity of
the astronomical model.
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Generating Calibration Sample

I Drake et al. (2006),
suggest generating
calibration sample of
effective area curves to
represent the uncertainty.

I The plot shows the
coverage of a sample of
1000 effective area curves,
and the default one (A0)
is a black line.

I Calibration Sample:
{A1,A2,A3, ...,AL}
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Three Main Steps

I Use Principle Component Analysis to parameterize effective
area curve.

I Model Building, that is combining source model with
calibration uncertainty.

I Three Inferencial Models.
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A simplified model of telescope

E (Y (Ei )) = A(Ei ) ∗ S(Ei ); Y (Ei ) ∼ Poisson(E (Y (Ei )))

Y (Ei ): Observed Photon in certain energy bin Ei

S(Ei ): True Source Model, we set it as,

S(Ei ) = exp(−nH ∗ α(Ei )) ∗ a ∗ E
(−Γ)
i + b

A(Ei ): Effective Area Curve

θ: source parameter, θ = {nH , a, Γ, b}
α(Ei ): photo-electric cross-section

b: background intensity
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Use PCA to represent effective area curve

A = A0 + δ̄ +
∑m

j=1 ej rjvj

A0 : default effective area,

δ̄ : mean deviation from A0,

rj and vj : first m principle component eigenvalues & vectors,

ej : independent standard normal deviations.

Capture 95% of uncertainty with m = 6 - 9. (Lee et al. 2011, ApJ)
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Three Inferencial Models

I Fixed Effective Area Model(Standard Approach)
I Pragmatic Bayesian Model

I Original Pragmatic Bayesian Scheme (Lee et al. 2011, ApJ)
I Efficient Pragmatic Bayesian Scheme

I Fully Bayesian Model
I Gibbs Sampling Scheme
I Importance Sampling Scheme
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Model One: Fixed Effective Area (Standard Approach)

I Model: p(θ|Y ,A0)

I We assume A = A0, where A0 is the default affective area
curve, and may not be the true one,

I This model doesn’t incorporate calibration uncertainty, which
is widely used because of its simplicity.

I The estimation may be biased and error bars may be
underestimated.

I Only one sampling step involved:
p(θ|Y ,A0) ∝ L(Y |θ,A0)π(θ)

I A mixed approach of Metropolis and Metropolis-hastings is
used in the sampling
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Model Two: Pragmatic Bayesian(Lee et al, 2011, ApJ)

I Model: Pprag (θ,A|Y ) = p(θ|A,Y ) ∗ π(A)

I Doubly-intractable Distribution!

I Main purpose is to reduce complexity of sampling.

I Step One: sample A from π(A)

I Step Two: sample θ from p(θ|Y ,A) ∝ L(Y |θ,A)π(θ)

I A mixed approach of Metropolis and Metropolis-hastings is
used in the Step Two
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Model Two: Efficient Pragmatic Bayesian

I After each draw of Ai (i from 1 to n) from π(A), we have to
find the best Metropolis-hastings proposal for p(θ|Y ,A),
which costs a long and relatively constant time, say, T1. (ML
involved.)

I Once the proposal distribution is fixed given Ai , each draw of
θ from p(θ|Y ,A) costs a rather short time, say, T2. (T1 > T2)

I In order to obtain the most effective samples for θ, we sample
m θ’s given Ai , say, θij . (j from 1 to m)
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Example
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Model Two: Efficient Pragmatic Bayesian

I Then this problem could be simplified into one optimization
problem.

I Minimize: Var( 1
n

∑
i (

1
m

∑
j θij ))

Subject to: T = nT1 + nmT2

I T is the total time, and when m = 1, the scheme turns into
original Pragmatic Bayesian, Lee et al(2011, ApJ)

I We can get simple analytical solution:

n =
√

BT√
BT1+

√
WT2T1

; m =
√

WT1√
BT2

I Here, B = σ2
θ − σ2

θ|A, W = σ2
θ|A, and we assume θ’s given A is

independent to each other

I Notice, m is not related to T .
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Model Two: Efficient Pragmatic Bayesian

I The assumption that θ’s given A is independent to each other
can be achieved if we thin the iterations within one A by a big
number.

I If we assume θ’s given one A are AR(1), neighbor correlation
is ρ

I Then Var(Ȳ ) = 1
n (B + W 1+ρ

m(1−ρ) )

I we can get still get similar optimization solutions as above,
only need to replace W by W 1+ρ

1−ρ
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Model Two: Efficient Pragmatic Bayesian Sampling

Two ways of Efficient Pragmatic Bayesian Sampling of N θ’s

I (n1,m1)⇒ (B̂, Ŵ )⇒ (m̂)⇒ (n̂ = N−n1m1
m̂ )

I while {n0 < N}
do { update B and W;
calculate m;
sample A;
sample m θ’s from p(θ|Y ,A);
n0 = n0 + m;}

I The second adaptive scheme hasn’t been verified yet!
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Model Two: Efficient Pragmatic Bayesian Sampling

Here are two chains, separately from Pragmatic Bayesian and
Efficient Pragmatic Bayesian Samplings for quasar dataset 3104.
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Model Two: Efficient Pragmatic Bayesian Sampling

QQ plot of these two chains.
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Model Two: Efficient Pragmatic Bayesian Sampling

Results for dataset 3104:
Before Efficient Pragmatic Bayesian Sample, T1, T2, B and W are
estimated. T1 = 7.1sec, T2 = 0.045sec, B=4.01e-5, W=2.40e-5.
Then the optimal m = 10, n = 300, if we want to draw 3000 θ’s.

µ̂abs nH σ̂2
abs nH σ̂2

µ̂ T

Pragmatic Bayesian 0.0447 6.36e-05 2.12e-08 5.9hrs
Efficient Pragmatic Bayesian 0.0443 6.10e-05 1.13e-07 0.6hrs

Ratio 0.187 10

EPB almost doubles effective sample size.
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Model Three: Fully Bayesian using Gibbs sampling

I Uses correct Bayesian Approach:
Pfull (θ,A|Y ) = p(θ|A,Y ) ∗ p(A|Y )

I This Model allows the current data to influence calibration
products,

I Step One: sample A from p(A|Y , θ) ∝ L(Y |θ,A)π(A)

I Step Two: sample θ from p(θ|Y ,A) ∝ L(Y |θ,A)π(θ)

I A mixed approach of Metropolis and Metropolis-hastings is
used in the both steps

I Most difficult approach to sample.
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Importance sampling for Fully Bayesian

Fully Bayesian using Gibbs sampling involves a lot of choice of
proposal distributions, and the choice of proposal distributions
highly influences the performance of the chains. Here, we
introduce importance sampling for Fully Bayesian, which takes
advantage of the draws from Pragmatic Bayesian Model.
(Pragmatic Bayesian Model has larger variance.)
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Importance sampling for Fully Bayesian

Steps:

I Get the draws from Pragmatic Bayesian Method
I Approximate Pprag (θ|A,Y ) as Multivariate Normal

distribution, we call it Pnew prag (θ|A,Y ).
I Pprag (θ|A,Y ) can’t be calculated because of doubly-intractable

distribution.
I 18 parameters from A are all independent standard normal.

I Get new draws by sampling π(A) and Pnew prag (θ|A,Y )

I Calculate the ratio r = Pfully (A, θ|Y )/Pnew prag (A, θ|Y )

I Use the ratios to do resampling for Fully Bayesian.
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Importance sampling for Fully Bayesian

I The great benefit from the new scheme is everything can work
automatically, saving the trouble of choosing ”nice” proposal
distributions in the Fully Bayesian Model using Gibbs
sampling.

I The disadvantage is that every time we need to fit Fully
Bayesian Model, we have to do Pragmatic Bayesian first.
Usually, astronomers would like to use all three Models and to
do the comparison.

I The results of Fully Bayesian using Gibbs sampling and
Importance sampling are usually identical to each other.

JIN XU Fully Bayesian Analysis of Calibration Uncertainty



Outline
Background

Methodological Research
Results

Future Work
New Dataset 1878
PCA for 1000 rmfs

Model Building
Principle Component Analysis
Three Inferencial Models

Importance sampling for Fully Bayesian

Here are two scatter plots, separately from Fully Bayesian using
Gibbs sampling(Black) and Importance sampling(Red) for quasar
dataset 3105.
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Simulation
Quasar Analysis

Eight simulated data sets

The first four data sets were all simulated without background
contamination using the XSPEC model wabs*powerlaw, nominal
default effective area A0 from the calibration sample of Drake et
al. (2006), and a default RMF.

I Simulation 1: Γ = 2,NH = 223cm−2, and 105 counts;

I Simulation 2: Γ = 1,NH = 221cm−2, and 105 counts;

I Simulation 3: Γ = 2,NH = 223cm−2, and 104 counts;

I Simulation 4: Γ = 1,NH = 221cm−2, and 104 counts;

The other four data sets (Simulation 5-8) were generated using an
extreme instance of an effective area.
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Results for Simulation 2
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Results for Simulation 3
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Results for Simulation 6
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Results for Simulation 7
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Quasar results

I 16 Quasar data sets were fit by these three models: 377, 836,
866, 1602, 3055, 3056, 3097, 3098, 3100, 3101, 3102, 3103,
3104, 3105, 3106, 3107.

I Most interesting founding for Fully Bayesian model is shift of
parameter fitting, besides the change of standard errors.

I Both comparisons of mean and standard errors among three
models are shown below.
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mean: fix-prag

Fixed Effective Area Curve Model has almost the same parameter
fitting as Pragmatic Bayesian Model.
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mean: fix-full

Fully Bayesian model shifts the parameter fitting, which mean data
itself influence the choice of effective area curve.
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sd: fix-prag

Pragmatic Bayesian has larger parameter standard deviation than
Fixed Effective Area Curve Model, especially for large datasets.

0.01 0.02 0.05 0.10 0.20 0.50 1.00

0.
01

0.
02

0.
05

0.
10

0.
20

0.
50

1.
00

σfix(Γ)

σ p
ra

g(Γ
)

●

●

●

●

●

●

●

●

377
836
866
1602
3055
3056
3097
3098
3100
3101
3102
3103
3104
3105
3106
3107

JIN XU Fully Bayesian Analysis of Calibration Uncertainty



Outline
Background

Methodological Research
Results

Future Work
New Dataset 1878
PCA for 1000 rmfs

Simulation
Quasar Analysis

sd: fix-full

Fully Bayesian usually has larger parameter standard deviation than
Fixed Effective Area Curve Model, too.

0.01 0.02 0.05 0.10 0.20 0.50 1.00

0.
01

0.
02

0.
05

0.
10

0.
20

0.
50

1.
00

σfix(Γ)

σ fu
ll(Γ

)

●

●

●

●

●

●

●

●

377
836
866
1602
3055
3056
3097
3098
3100
3101
3102
3103
3104
3105
3106
3107

JIN XU Fully Bayesian Analysis of Calibration Uncertainty



Outline
Background

Methodological Research
Results

Future Work
New Dataset 1878
PCA for 1000 rmfs

Simulation
Quasar Analysis

sd: prag-full

It can be observed that generally parameter standard deviation
from Fully Bayesian Model is between Pragmatic Bayesian and
Fixed Effective Area Curve Models.
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more plots

µ̂prag (Γ) =
µprag (Γ)−µfix (Γ)

σfix (Γ) , these lines cover 2 sd.
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more plots

µ̂full (Γ) = µfull (Γ)−µfix (Γ)
σfix (Γ) , these lines cover 2 sd.
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Doubly-intractable Distribution

I Murray et al (2012) defines doubly-intractable distribution
this way:

p(θ|y) = ( f (y ;θ)π(θ)
Z(θ) )/p(y)

I Here, Z (θ) =
∫

f (y ; θ)dy , is called as ”unknown constant”
and can’t be computed.

I Doubly-intractable Distributions widely exist, and most
famous method is introduced by Møller, Jesper, et al.(2006),
called ”Auxiliary Variable Method”.

I One of most popular model involving Doubly-intractable
Distribution is Ising Model.
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Doubly-intractable Distribution

I Our Pragmatic Bayesian Model involves:

Pprag (θ,A|Y ) = p(θ|A,Y ) ∗ π(A) = L(Y |θ,A)∗π(θ)
p(Y |A) ∗ π(A)

I Here, p(Y |A) is unknown normalizing constant.
I Interestingly, unlike other Doubly-intractable Distributions,

our Pragmatic Bayesian Model can avoid this constant easily
and get the posterior draws.

I However, when we use these draws to help sample Fully
Bayesian Model by importance sampling, we find out that
ratio = p(Y |A)

p(Y ) , can’t avoid the constant!!!
I That’s the reason we re-estimate the draws’ density by

Multivariate Normal, and use new draws from the
Multi-Gaussian to do the importance sampling. Avoid the
constant again!!!
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Other Calibration Uncertainty

For effective area curve, Lee et al. firstly gets 1000 curve samples
and then use PCA to parameterize the effective area curve.
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Other Calibration Uncertainty

I PCA has its unique advantages: easy to parameterize vector
samples; dimension highly reduced; easy to sample afterwards.

I However, there is no principled method of PCA to
parameterize matrix samples.

I Other Calibration Uncertainty, rmf and psf are both matrix.

I Our goal is to parameterize these matrix samples, define the
probability density of the matrix, and nicely sample new
matrix.
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Other Calibration Uncertainty

Some possible approaches:

I Diffusion map allows mapping data into a coordinate system
that efficiently reveals the geometric structure of data.
However, because of its nonlinear transformation, diffusion
map is not reversible.

I Delaigle et al (2010) introduced a way to define probability
density for a distribution of random functions. However, how
to extend it into 2-dimension space is under question.

I Wavelets technique can provide nice way to extract
information from 2-dimension data. Besides, complementary
wavelets allows us to recover the original information with
minimal loss.
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Other Calibration Uncertainty

Here is our potential approach:

I Use wavelets to analyze all the matrix samples;

I Use PCA to summarize wavelet parameters from step one;

I By sampling independent standard normal deviations to
construct wavelet parameters;

I Use new wavelet parameter to construct new matrix sample.
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1878

I Model: ”xsphabs.abs1*(xsapec.kT1+xsapec.kT2)”

I Set kT2.Abundanc = kT1.Abundanc

I Six source parameters: abs1.nH, kT1.kT, kT1.Abundanc,
kT1.norm, kT2.kT, kT2.norm

I Sherpa fit() using Neldermead motheds to find MLE fails

I Stuck at boundaries: abs.nH=0 and kT1.Abundanc=5

I Multiple modes
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Fixed ARF

The results are highly correlated to starting values. Although the
chains might seem converge, it’s just stuck in the local mode.
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Fully Bayeisan

Similarly, it happens to Fully Bayesian. Once its stuck in the mode,
it seems impossible to accept a new ARF.
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Redistribution Matrix File (RMF)

Matrix consists the probability that an incoming photon of energy
E will be detected in the output detector channel I. The matrix has
dimension 1078*1024. But the data is stored in a compressed
format. For example rmf 0001:
n grp = UInt64[1078], stores the number of non-zero groups in
each row
f chan = UInt32[1395], stores starting point of each group
n chan = UInt32[1395], stores the element number of each group
matrix = Float64[384450], stores all the non-zero values
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Redistribution Matrix File (RMF)

I The sum of each row equals to one

I sum(n grp)=1395

I sum(n chan)=384450

I sum(matrix)=1078
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log(Rmf0001+1e-6)
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log(Rmf0002+1e-6)
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prepare for PCA

I raw data dimension (1000,1078*1024)

I discard bottom-right zeros, dimension (1000, 445380)

I I use python DMP NIPALS algorithm (Nonlinear Iterative
Partial Least Squares)

I (1000, 445380) MemoryError!!!

I (100, 445380) MemoryError!!!

I (1000, 100000) MemoryError!!!

I (1000, 10000) 1 hours, I got 5 principal components

I variance: (3.6e-02, 8.8e-03, 1.02e-04, 3.05e-05, 9.74e-06)
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simulating rmf
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