Statistical Modeling of Sunspot Cycles

Yaming Yu
Department of Statistics, Harvard University

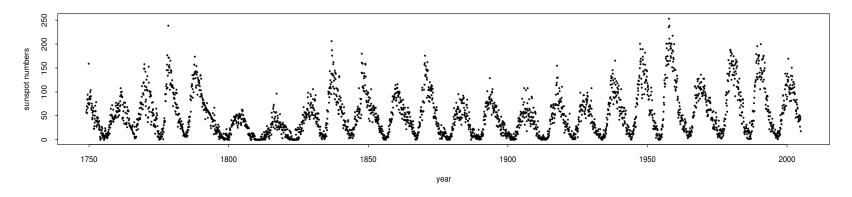
Sunspots

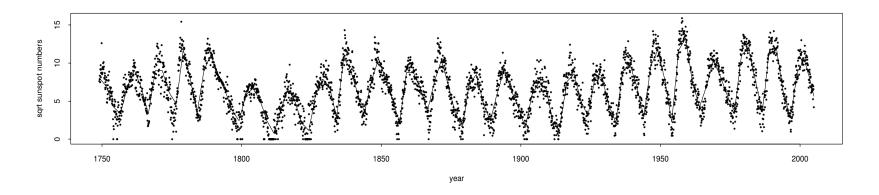
- What are they?
 - Sunspots appear as dark spots on the surface of the Sun.
 - Temperature lower than the surrounding photosphere.
 Strong magnetic fields.
 - They typically last several days; some may live for weeks.
- The longest directly observed index of solar activity
 - 1610: Galileo first viewed sunspots with his new telescope.
 - 1749: Daily observations were started at the Zurich Observatory.
 - 1849: Continuous (daily) observations were obtained with the addition of more observatories.

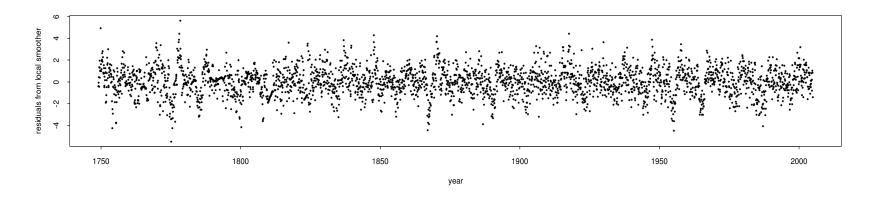
Sunspot Number (SSN) Data

- Sunspots occur in groups.
- Sunspot No. = No. of individual spots + $10 \times No.$ of groups
- The International Sunspot Number: compiled by the Sunspot Index Data Center in Belgium.
 - The NOAA sunspot number: compiled by the US National Oceanic and Atmospheric Administration.
- Top: monthly averages of the International Sunspot Numbers.
 - Middle: local smoother fit to sqrt(SSN).
 - Bottom: residuals.

sunspot numbers







Sunspot Cycles

Features of the sunspot number data

- A lot of noise.
- Quasi-periodicity: average cycle length is 11 years (Wolf 1852).
- Asymmetry: rise to maximum is faster than fall to minimum (Waldmeier 1935, 1939).
- Waldmeier effect: stronger cycles tend to take less time to rise to maximum amplitude.
- Long-term (8–9 cycles) periodicity ...

How to quantify the statistical significance?

Statistical Modeling of Sunspot Cycles

- Physical models of the solar dynamo are unfortunately lacking/flawed.
- But we can build statistical models.

Cycle lengths vary; purely periodic models don't work.

• A Poisson model with a latent autoregressive process

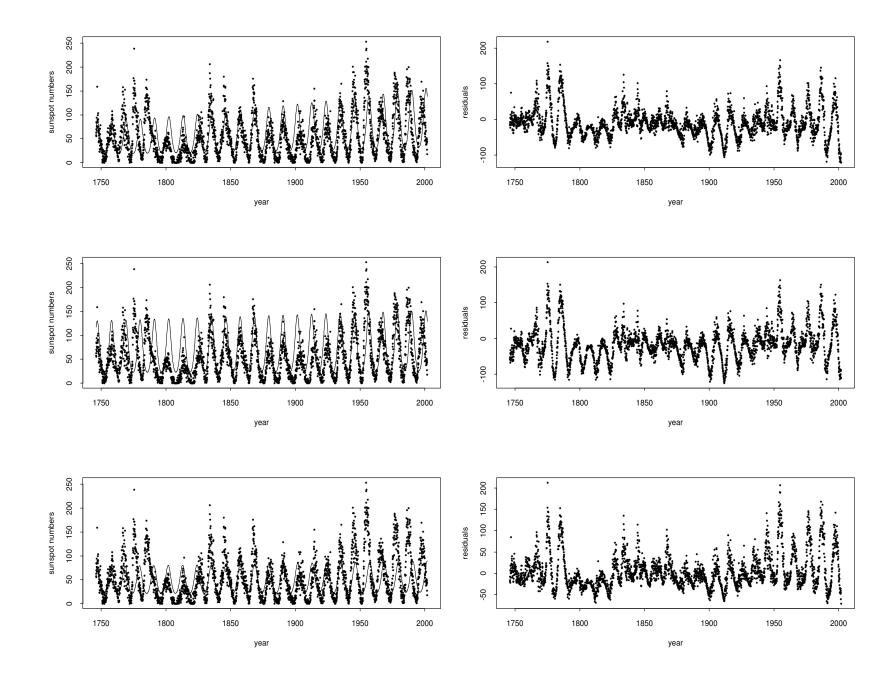
$$Y_t|(\xi_t,\beta) \stackrel{ind}{\sim} Pois\left(e^{\beta_0+\beta_1t+\beta_2\cos(2\pi t/T+t_0)+\xi_t}\right);$$

$$\xi_t|(\xi_{< t},\beta,\rho,\delta) \sim N(\rho\xi_{t-1},\delta^2).$$

Three posterior realizations

- Left: data with fitted curve

- Right: residuals



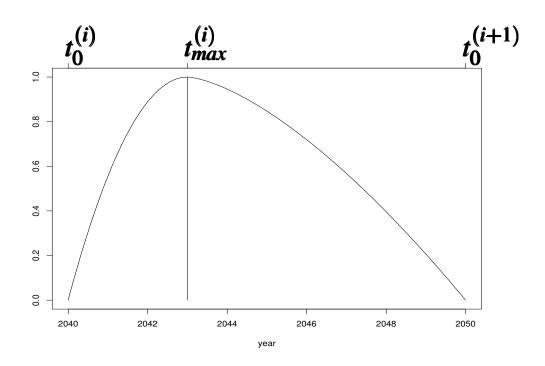
Modeling Each Cycle by Simple Functions

Notation for cycle *i*

• $t_0^{(i)}$: start of cycle i

• $t_{max}^{(i)}$: time at cycle maximum

• $t_0^{(i+1)}$: end of cycle i



- R_t: "average solar activity level" at time t
 - For the rising phase $t < t_{max}^{(i)}$

$$R_{t} = c_{i} \left(1 - \left(\frac{t_{max}^{(i)} - t}{t_{max}^{(i)} - t_{0}^{(i)}} \right)^{\alpha_{1}} \right);$$

- For the declining phase $t > t_{max}^{(i)}$

$$R_{t} = c_{i} \left(1 - \left(\frac{t - t_{max}^{(i)}}{t_{0}^{(i+1)} - t_{max}^{(i)}} \right)^{\alpha_{2}} \right).$$

- cycle length = $t_0^{(i+1)} t_0^{(i)}$; time to rise to maximum = $t_{max}^{(i)} - t_0^{(i)}$; amplitude = c_i .
- $\alpha_1, \alpha_2 > 1$: the same shape parameters for all cycles.

A Nonlinear Regression Model

Model sqrt of sunspot numbers to stablize the variance:

$$\sqrt{Y_t} \stackrel{ind}{\sim} N(\beta_0 + \beta_1 t + R_t, \sigma^2)$$

Cycle-specific parameters

$$-T_0 = (t_0^{(i)}, i = 0, 1, ..., k);$$

$$-T_{max} = (t_{max}^{(i)}, i = 0, ..., k-1);$$

$$-C = (c_i, i = 0, ..., k-1).$$

Total number of available cycles k = 24.

Priors

• flat on $t_0^{(i)}$, $i=1,\ldots,k-1$ and T_{max} subject to

$$t_0^{(i)} < t_{max}^{(i)} < t_0^{(i+1)};$$

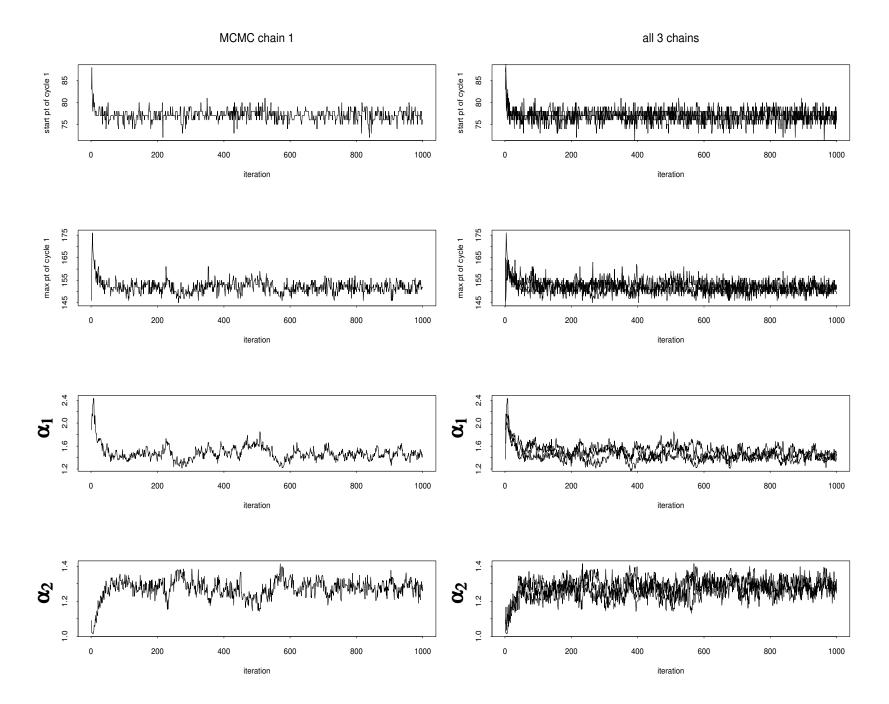
- flat but with extra constraint on $t_0^{(0)}$, $t_0^{(k)}$ and $\alpha = (\alpha_1, \alpha_2)$;
- standard prior on C, $\beta = (\beta_0, \beta_1)$, and σ^2 .

Model-fitting Procedure

- Gibbs sampler with M–H steps.
- Lots of local modes in simulations.

Note: Given T_0 , T_{max} and α , posterior of (C, β, σ^2) follows standard normal-inverse χ^2 . So

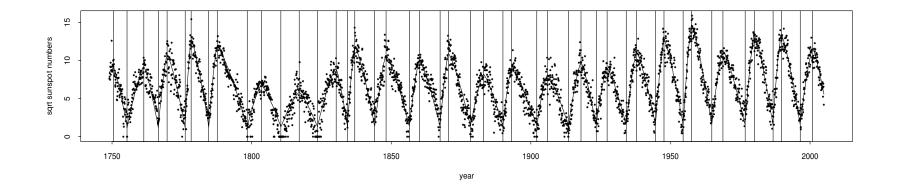
- update (T_0, T_{max}, α) one coordinate at a time according to its conditional density, but with (C, β, σ^2) integrated out;
- draw (C, β, σ^2) given (T_0, T_{max}, α) using OLS routines.



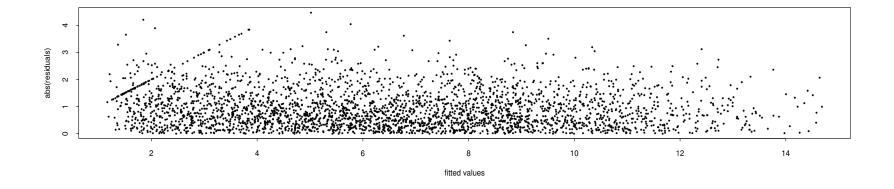
Posterior Inference

Fitted model and residuals

- – Top: sqrt(SSN) with fitted values. Vertical lines represent one posterior draw of (T_0, T_{max}) .
 - Middle: residuals vs. time (year).
 - Bottom: residuals vs. fitted values.







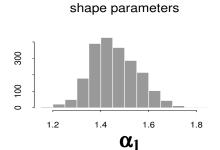
- It's a fairly good fit. Much better than the local smoother.
- The fit is better for recent data (year > 1850) than for the less reliable data in the past.

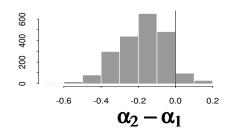
• The 45 degree streak is an artifact caused by zero SSN observations.

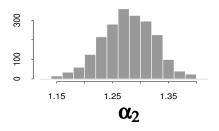
Posterior Inference: Shape Parameters α_1, α_2

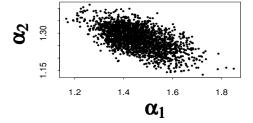
	mean	s.e.	2.5%	97.5%
α_1	1.46	0.10	1.29	1.66
α_2	1.28	0.05	1.18	1.36

$$Pr(\alpha_2 - \alpha_1 < 0|Y) = 0.94$$



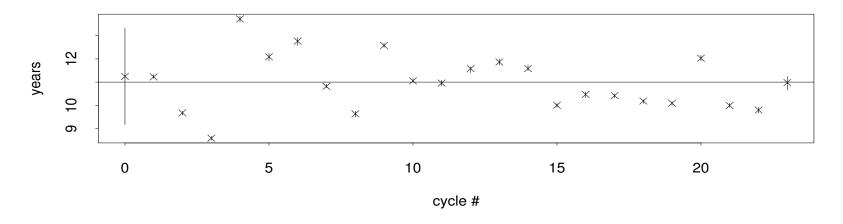




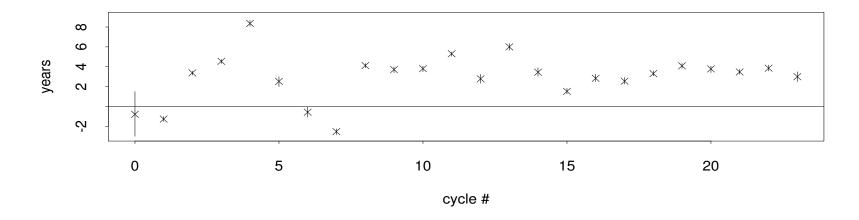


Cycle Length Patterns

cycle length



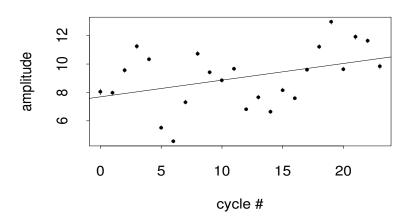
time to fall - time to rise

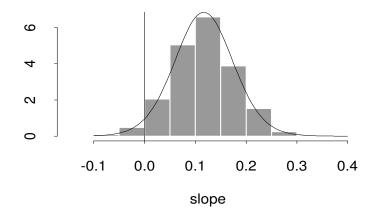


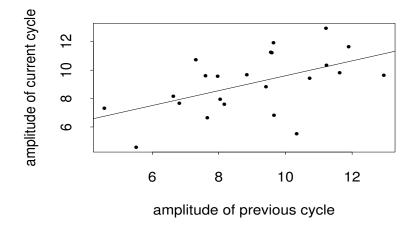
- Average cycle length is around 11 years (x's mark posterior means)
- Error bars are small
 (Vertical bars represent the 50% marginal credible intervals)
- The cycle length has no apparent upward or downward trend.
- With few exceptions, cycles take more time to decline than to rise.
- Only about half of Cycle # 0 is observed, hence the large error bars.

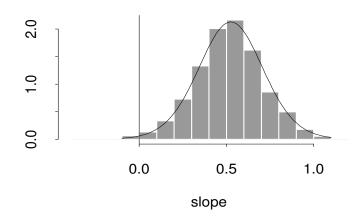
Cycle Amplitude Patterns

cycle amplitude





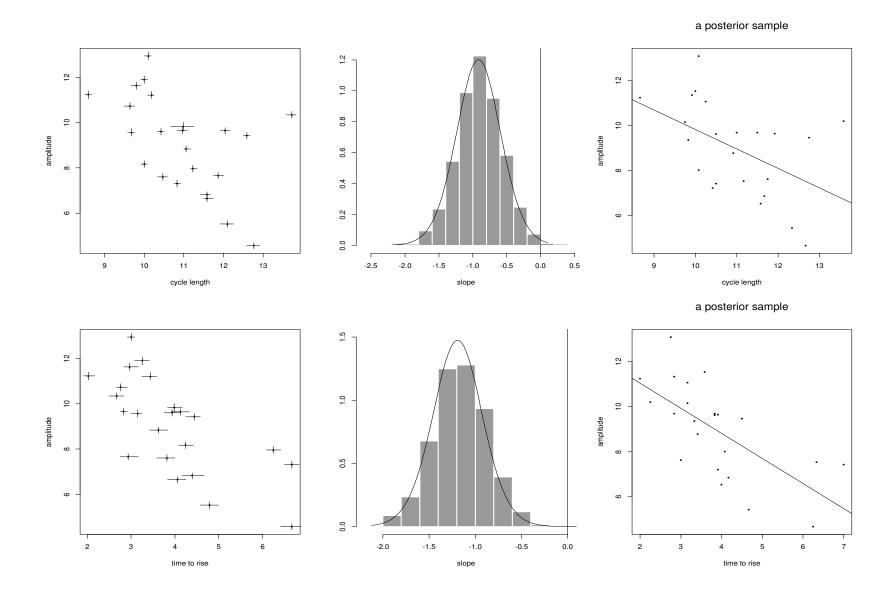




Evaluating Statistical Significance

- Wrong procedure: simple linear regression using the posterior mean as the true amplitudes.
- Ideally we should fit a hierarchical model.
- A two-stage simulation procedure:
 - Draw posterior samples of the cycle amplitudes (done).
 - For each sample, fit the regression model of amplitude vs. cycle #,
 and then draw from the posterior of the regression coefficient.
- Because error bars are small, results (histogram) are nearly identical to those of simple linear regression (solid curve).

Relationship Between Cycle Length and Amplitude



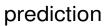
- Row 1: amplitude vs. cycle length
 - Left: Scatterplot of the posterior means.
 Vertical (horizontal) bars are 50% credible intervals for cycle amplitude (length).
 - Middle: Statistical significance of the regression slope.
 Little difference between simple linear regression and two-stage simulation.
 - Right: A posterior sample and its regression line.
- Row 2: amplitude vs. time to rise to cycle maximum
 - Middle: the error bars are large enough to make a (very small) difference.

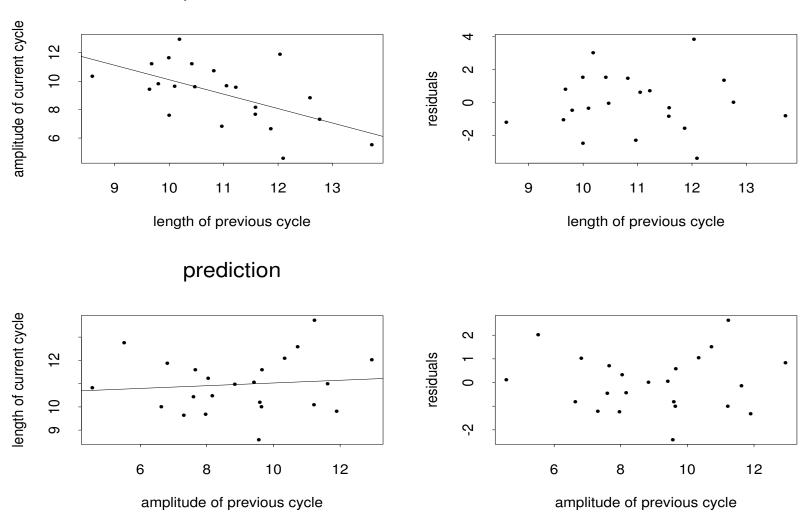
Forecasting Problems

- Predict the rest of a partially observed cycle
- Predict the length and amplitude of an unobserved future cycle

The amplitude-length (amplitude-period) relations:

- Length of the previous cycle is a fairly good predictor of the amplitude of the current cycle.
- Amplitude of the previous cycle has little correlation with the length of the current cycle.





Work in Progress

- Data quality problems.
- Incorporating additional information, e.g., spatial location of sunspots, magnetic polarity information; joint modeling with 10.7cm flux, etc.
- A more elaborate model to link cycle length, time to rise, and amplitude through hyperparameters.
- Allowing the start of cycle i+1 to be slightly different from the end of cycle i.
- Comparison with similar models in the literature.
- Better algorithms. More efficient computer code.

• • • •