
The Potential of  
Deep Learning with 
Astronomical Data

Chad M. Schafer!
Department of Statistics!

Carnegie Mellon University!
June 2017!



The LSST ISSC

•  Informatics and Statistics one of eight 
LSST Science Collaborations!

•  Over 60 members and growing: !
data scientists and astronomers!

•  http://issc.science.lsst.org!




LSST Basics
•  10-year photometric survey!
•  3.2 Gigapixel camera!
•  32 trillion observations of !

40 billion objects!
•  Science Goals!
–  Cataloging the Solar System!
–  Exploring the Changing Sky!
–  Milky Way Structure & Formation!
–  Understanding Dark Matter and Dark Energy!

Ivezić, et al. (2014)!



Common Themes
•  General implementation challenges!
•  Existing procedures to LSST scales!
•  Expanding sophistication of analysis 

procedures in use!
•  Making the most of available data!



Representations
•  A recurring challenge is representing !

observables in forms amenable to 
standard analysis tools!

•  The fundamental challenge of “Big Data”!
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Representations
What features are most useful for 
classifying objects?!
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Blazars versus CVs
Cataclysmic Variables (CV) – binary 
system in Milky Way with matter transfer 
from secondary (normal) star to primary 
white dwarf!

Blazars – Quasars with “jet” of energy 
pointed at Earth!

Both produce light curves with irregular 
variability, lacking periodic structure!



Blazars versus CVs
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Figure 5.2: Example of light curves from the CRTS.

set, respectively.

Number of
obs.

Prop. of
censored
obs.

Total time
duration

Min. time
difference

Max. time
difference

Min. magni-
tude

Max. magni-
tude

Min. 84 0.0000 1584 0.0004 163.3 13.01 15.74
BL Mean 201 0.0058 1851 0.0010 232.9 15.94 18.44

Max. 302 0.0372 1916 0.0037 356.0 17.68 21.26
Min. 11 0.0000 731 0.0002 138.4 12.35 14.40

CV Mean 197 0.1353 1848 0.0015 261.3 16.17 19.98
Max. 331 0.9529 2069 0.0089 1003.0 19.17 22.05

Table 5.1: Summary of the 167 light curves in the training set (23 blazars and
144 cataclysmic variables).

5.1.1 Light Curve Features

To handle the light curve data for classification purposes we need to homogenize the data by extracting

features or statistical summaries for all of the light curves. These features can then be used as inputs

for classification. Extracting light curve features that are useful for classification has been extensively

explored as discussed in Section 2.2.3 (see e.g., Debosscher et al. 2007 and Richards et al. 2011). In

83

Light Curves from Catalina Real-Time Transient Survey (Drake 2009)!
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Comparison of Structure Functions!



Summarizing the SF
Typical to fit model to structure function!
•  Power Law Form (Schmidt et al.)!
•  Damped Random Walk (Kelly et al.)!

Effort to find a low-dimensional 
representation, avoiding the curse of 
dimensionality!
!



Summarizing the SF

Figure 2 in Peters et al. Quasar light curve and SF!



Summarizing the SF
Typical to fit model to structure function!
•  Power Law Form (Schmidt et al.)!
•  Damped Random Walk (Kelly et al.)!

Effort to find a low-dimensional 
representation, avoiding the curse of 
dimensionality!
Ideally, could utilize higher-dimensional 
representation!
!



Deep Learning
“Deep learning is a particular kind of 
machine learning that achieves great 
power and flexibility by representing the 
world as a nested hierarchy of concepts, 
with each concept defined in relation to 
simpler concepts, and more abstract 
representations computed in terms of 
less abstract ones.” !
!
--Page 8 in Deep Learning, 
Goodfellow, Bengio, and Courville!
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Resurgence of ANN
Multiple factors contributed to growth of 
interest in Deep Learning:!
•  Increase in training set sizes!
•  Improved algorithms for training deeper 

networks (e.g., Hinton, et al. in 2006)!
•  Growth in computational resources!
•  Successes!



Flexibility
A primary appeal of the approach is the 
flexibility in constructing the layers!
–  How many units are there in each layer?!
–  What is the mapping from one layer to the 

next?!
–  How is the output constructed from the 

final hidden layer?!
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Fully Connected Layer
A standard mapping is a fully connected 
layer, simply a linear combination of the 
input (either the data or the output of the 
preceding layer)!
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�(·) is the activation function, a simple 
nonlinear mapping!
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Output Layer
There are standard choices for generating 
the output from the final hidden layer!
!
If the output is continuous, then simply 
taking a linear combination is typical:!
!


y = b+wTu

Result of final hidden layer



Output Layer
If the output is binary, then transformation 
to a probability is done via the logistic 
sigmoid function:!



y =

1

1 + exp(�(b+wTu))



Output Layer
If the output is multinomial, then 
transformation to a probability is done 
via the softmax function:!
!
!
where!



softmax(z)i =
exp(zi)P
j exp(zj)

z = WTu+ b



Some Code

fc1 = mx.symbol.FullyConnected(data, name="fc1", num_hidden=128)

act1 = mx.symbol.Activation(fc1, name="relu1", act_type="relu")

fc2 = mx.symbol.FullyConnected(act1, name="fc2", num_hidden=128)

act2 = mx.symbol.Activation(fc2, name="relu2", act_type="relu")

fc3 = mx.symbol.FullyConnected(act2, name="fc3", num_hidden=2)

fullnetwork = mx.symbol.SoftmaxOutput(fc3, name="sm")

R using package mxnet:!





Flexibility
A primary appeal of the approach is the 
flexibility in constructing the layers!
–  How many units are there in each layer?!
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Flexibility
A primary appeal of the approach is the 
flexibility in constructing the layers!
–  How many units are there in each layer?!
–  What is the mapping from one layer to the 

next?!
–  How is the output constructed from the 

final hidden layer?!
There are alternatives to fully connected 
layers, e.g. convolutional networks and 
recurrent networks!



How Does it Work?
Instead of carefully constructing a model 
to relate the input to the output, deep 
learning exploits a large collection of 
simple components to make a prediction!
!
What is the role of expert knowledge?!



How Does it Work?
Universal Approximation Theorem 
(Hornik, et al.): With enough units, a 
single hidden layer can approximate to 
arbitrary precision any “nice” function.!
!
But: Deeper networks use units more 
efficiently, are easier to fit, and generalize 
better!




How Does it Work?
But: Deeper networks use units more 
efficiently, are easier to fit, and generalize 
better!

Montufar, et al.: “[f]or deep models, the 
maximal number of linear regions grows 
exponentially fast with the number of 
parameters, whereas, for shallow models, 
it grows polynomially fast with the number 
of parameters.”!





Fitting the Model
A cost function is optimized to estimate 
the parameters (weights)!

Choose cost function to maximize 
appropriate likelihood!

Stochastic gradient descent with back 
propagation to estimate gradient!



Regularization
Overfitting is a huge concern!

Approaches to regularization (smoothing) 
manage the bias/variance tradeoff!

The model is parametric, so L2 (ridge) or 
L1 (lasso) penalties on the cost function 
are commonly used!



Regularization
Dropout is a novel approach to 
regularization!

Units are randomly included/excluded 
during training, approximating averaging 
over all possible submodels!

Variant of bagging!

Reduces potential influence of any 
individual unit!
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Absolute Time Difference!

Quantile regression fits!



Blazar versus CV
Fit model with three hidden layers, using 
Dropout!

128 nodes per layer!

Rectified linear units as the activation 
functions!

958 CVs, 318 Blazars from Catalina Real-
Time Transient Survey !

!
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Potential of Deep Learning
Best suited to situations where high-
dimensional input is required!

Avoid the curse of dimensionality!

Seems particularly relevant for 
classification challenges!



Quasar Classification
Quasar Structure Function
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