The Bayesian Statistics behind Calibration Concordance

Yang Chen
Harvard University
June 5, 2017

Outline

(1) Introduction
(2) Scientific and Statistical Models
(3) Bayesian Hierarchical Model
(4) Shrinkage Estimators
(5) Bayesian Computation
(6) Numerical Results
(7) Summary

(1) Introduction

(2) Scientific and Statistical Models
(3) Bayesian Hierarchical Model
(4) Shrinkage Estimators
(5) Bayesian Computation
(6) Numerical Results
(7) Summary

Calibration Concordance Problem (Example: E0102)

E0102 - the remnant of a supernova that exploded in a neighboring galaxy known as the Small Magellanic Cloud.

Calibration Concordance Problem (Example: E0102)

Four "sources" - spectral lines that appear in the E0102 spectrum.

Calibration Concordance Problem (Example: E0102)

2 lines - Hydrogen like O VIII at $18.969 \AA$ \& the resonance line of O VII from the Helium like triplet at $21.805 \AA$.
2 lines - Hydrogen like NeX at 12.135Å \& the resonance line of Ne IX from the Helium like triplet at $13.447 \AA$.

Calibration Concordance Problem (Example: E0102)

13 detectors over 4 telescopes, Chandra (ACIS-S with and without HETG, and ACIS-I), XMM-Newton (RGS, EPIC-MOS, EPIC-pn), Suzaku (XIS), and Swift (XRT). (Plucinsky et al. 2017).

$i \equiv[$ RGS 1, RGS2, HETG-MEG, ACIS-S3, MOS1, MOS2, pn, XIS0, XIS 1, XRT $] \mathbf{x}$ [560-574 eV, $654 \mathrm{eV}, 905-922 \mathrm{eV}, 1022 \mathrm{eV}](i=1 . .10,11 . .20,21.30,31 . .40)$
$j \equiv$ E0102 fluxes in [OVII, OVIII, NeIX, NeX$](j=1 . .4)$

- $\mathrm{c}_{1,1}=$ observed counts in RGS2/[560-574 eV], $\mathrm{c}_{12,2}=$ in HETG-MEG/[654 eV], $\mathrm{c}_{23,3}=$ in ACIS-S3/[905-922 eV], etc.
- $\mathrm{a}_{i}=$ effective area, $\mathrm{f}_{j}=$ expected flux, $\alpha_{i j}=$ exposure time of instrument i for source j (in this case, $\alpha_{k \cdot}$) are identical for $k=\{l, l+10, l+20, l+30\}, l=1 . .10$)

Calibration Concordance Problem (Example: E0102)

Notations

- N Instruments with true effective area $A_{i}, 1 \leq i \leq N$.
- For each instrument i, we know estimated $a_{i}\left(\approx A_{i}\right)$ but not A_{i}.

Calibration Concordance Problem (Example: E0102)

Notations

- N Instruments with true effective area $A_{i}, 1 \leq i \leq N$.
- For each instrument i, we know estimated $a_{i}\left(\approx A_{i}\right)$ but not A_{i}.
- M Sources with fluxes $F_{j}, 1 \leq j \leq M$.
- For each source j, F_{j} is unknown.

Calibration Concordance Problem (Example: E0102)

Notations

- N Instruments with true effective area $A_{i}, 1 \leq i \leq N$.
- For each instrument i, we know estimated $a_{i}\left(\approx A_{i}\right)$ but not A_{i}.
- M Sources with fluxes $F_{j}, 1 \leq j \leq M$.
- For each source j, F_{j} is unknown.
- Photon counts $c_{i j}$: from measuring flux F_{j} with instrument i.

Calibration Concordance Problem (Example: E0102)

Notations

- N Instruments with true effective area $A_{i}, 1 \leq i \leq N$.
- For each instrument i, we know estimated $a_{i}\left(\approx A_{i}\right)$ but not A_{i}.
- M Sources with fluxes $F_{j}, 1 \leq j \leq M$.
- For each source j, F_{j} is unknown.
- Photon counts $c_{i j}$: from measuring flux F_{j} with instrument i.
- Lower cases: data / estimators. Upper cases: parameter / estimand.

Calibration Concordance Problem (Example: E0102)

Notations

- N Instruments with true effective area $A_{i}, 1 \leq i \leq N$.
- For each instrument i, we know estimated $a_{i}\left(\approx A_{i}\right)$ but not A_{i}.
- M Sources with fluxes $F_{j}, 1 \leq j \leq M$.
- For each source j, F_{j} is unknown.
- Photon counts $c_{i j}$: from measuring flux F_{j} with instrument i.
- Lower cases: data / estimators. Upper cases: parameter / estimand.

Original Questions
Systematic errors in comparing effective areas \Rightarrow absolute measurements.

Calibration Concordance Problem (Example: E0102)

Notations

- N Instruments with true effective area $A_{i}, 1 \leq i \leq N$.
- For each instrument i, we know estimated $a_{i}\left(\approx A_{i}\right)$ but not A_{i}.
- M Sources with fluxes $F_{j}, 1 \leq j \leq M$.
- For each source j, F_{j} is unknown.
- Photon counts $c_{i j}$: from measuring flux F_{j} with instrument i.
- Lower cases: data / estimators. Upper cases: parameter / estimand.

Original Questions
Systematic errors in comparing effective areas \Rightarrow absolute measurements.
(1) How to adjust A_{i} s.t. $c_{i j} / A_{i} \approx F_{j}$ within statistical uncertainty?
(2) How to estimate the systematic error on the A_{i} ?

(1) Introduction

(2) Scientific and Statistical Models
(3) Bayesian Hierarchical Model

4 Shrinkage Estimators
(5) Bayesian Computation
(6) Numerical Results
(7) Summary

Scientific and Statistical Models

Scientific Model
Multiplicative in original scale and additive on the log scale.
Counts $=$ Exposure \times Effective Area \times Flux,

$$
C_{i j}=T_{i j} A_{i} F_{j}, \quad \Leftrightarrow \quad \log C_{i j}=B_{i}+G_{j}
$$

where \log area $=B_{i}=\log A_{i}, \log$ flux $=G_{j}=\log F_{j} ;$ let $T_{i j}=1$.

Scientific and Statistical Models

Scientific Model
Multiplicative in original scale and additive on the log scale.

$$
\text { Counts }=\text { Exposure } \times \text { Effective Area } \times \text { Flux }
$$

$$
C_{i j}=T_{i j} A_{i} F_{j}, \quad \Leftrightarrow \quad \log C_{i j}=B_{i}+G_{j}
$$

where \log area $=B_{i}=\log A_{i}, \log$ flux $=G_{j}=\log F_{j} ;$ let $T_{i j}=1$.

Statistical Model

$$
\log \text { counts } y_{i j}=\log c_{i j}=\alpha_{i j}+B_{i}+G_{j}+e_{i j}, \quad e_{i j} \stackrel{i n d e p}{\sim} \mathcal{N}\left(0, \sigma_{i j}^{2}\right) ;
$$

where $\alpha_{i j}=-0.5 \sigma_{i j}^{2}$ to ensure $E\left(c_{i j}\right)=C_{i j}=A_{i} F_{j}$.

- Known Variances: $\sigma_{i j}$ known.
- Unknown Variances: $\sigma_{i j}=\sigma_{i}$ unknown.

(1) Introduction

(2) Scientific and Statistical Models

(3) Bayesian Hierarchical Model

4 Shrinkage Estimators
(5) Bayesian Computation
(6) Numerical Results
(7) Summary

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

\log counts |area \&flux \& variance $\stackrel{\text { indep }}{\sim}$

$$
y_{i j} \mid B_{i}, G_{j}, \sigma_{i}^{2} \stackrel{\text { indep }}{\sim} \mathcal{N}\left(-\frac{\sigma_{i}^{2}}{2}+B_{i}+G_{j}, \sigma_{i}^{2}\right),
$$

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

\log counts |area \&flux \&variance $\stackrel{\text { indep }}{\sim}$

$$
y_{i j} \mid B_{i}, G_{j}, \sigma_{i}^{2} \stackrel{\text { indep }}{\sim} \mathcal{N}\left(-\frac{\sigma_{i}^{2}}{2}+B_{i}+G_{j}, \sigma_{i}^{2}\right),
$$

Setting up priors for unknowns.
(1)
(2)
(3)

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area \&flux \& variance $\stackrel{\text { indep }}{\sim}$

$$
y_{i j} \mid B_{i}, G_{j}, \sigma_{i}^{2} \stackrel{\text { indep }}{\sim} \mathcal{N}\left(-\frac{\sigma_{i}^{2}}{2}+B_{i}+G_{j}, \sigma_{i}^{2}\right)
$$

Setting up priors for unknowns.
(1) Prior for log-flux G_{j} : flat (improper, non-informative).
(2) Prior for log-area $B_{i}: \mathcal{N}\left(b_{i}, \tau_{i}^{2}\right)$ (conjugate, proper).
©

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area \&flux \& variance $\stackrel{\text { indep }}{\sim}$

$$
\begin{aligned}
y_{i j} \mid B_{i}, G_{j}, \sigma_{i}^{2} & \stackrel{\text { indep }}{\sim} \\
\sim & \mathcal{N}\left(-\frac{\sigma_{i}^{2}}{2}+B_{i}+G_{j}, \sigma_{i}^{2}\right), \\
B_{i} \stackrel{\text { indep }}{\sim} & N\left(b_{i}, \tau_{i}^{2}\right), G_{j} \stackrel{\text { indep }}{\sim} \text { flat prior, }
\end{aligned}
$$

Setting up priors for unknowns.
(1) Prior for log-flux G_{j} : flat (improper, non-informative).
(2) Prior for log-area $B_{i}: \mathcal{N}\left(b_{i}, \tau_{i}^{2}\right)$ (conjugate, proper).
©

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area \&flux \& variance $\stackrel{\text { indep }}{\sim}$

$$
\begin{aligned}
& y_{i j} \mid B_{i}, G_{j}, \sigma_{i}^{2} \stackrel{\text { indep }}{\sim} \\
& \mathcal{N}\left(-\frac{\sigma_{i}^{2}}{2}+B_{i}+G_{j}, \sigma_{i}^{2}\right), \\
& B_{i} \stackrel{\text { indep }}{\sim} N\left(b_{i}, \tau_{i}^{2}\right), G_{j} \stackrel{\text { indep }}{\sim} \text { flat prior, }
\end{aligned}
$$

Setting up priors for unknowns.
(1) Prior for log-flux G_{j} : flat (improper, non-informative).
(2) Prior for log-area $B_{i}: \mathcal{N}\left(b_{i}, \tau_{i}^{2}\right)$ (conjugate, proper).
(3) Unknown variance: Prior for σ_{i}^{2} : inverse Gamma (conjugate, proper).

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area \&flux \& variance $\stackrel{\text { indep }}{\sim}$

$$
\begin{aligned}
\qquad y_{i j} \mid B_{i}, G_{j}, \sigma_{i}^{2} & \stackrel{\text { indep }}{\sim} \mathcal{N}\left(-\frac{\sigma_{i}^{2}}{2}+B_{i}+G_{j}, \sigma_{i}^{2}\right), \\
B_{i} & \stackrel{\text { indep }}{\sim} N\left(b_{i}, \tau_{i}^{2}\right), G_{j} \stackrel{\text { indep }}{\sim} \text { flat prior, } \\
\text { Unknown variance: } \sigma_{i}^{2} & \stackrel{\text { indep }}{\sim} \text { Inv-Gamma }\left(d f_{g}, \beta_{g}\right) .
\end{aligned}
$$

Setting up priors for unknowns.
(1) Prior for log-flux G_{j} : flat (improper, non-informative).
(2) Prior for log-area $B_{i}: \mathcal{N}\left(b_{i}, \tau_{i}^{2}\right)$ (conjugate, proper).
(3) Unknown variance: Prior for σ_{i}^{2} : inverse Gamma (conjugate, proper).

(1) Introduction

(2) Scientific and Statistical Models

3 Bayesian Hierarchical Model
4 Shrinkage Estimators
(5) Bayesian Computation
(6) Numerical Results
(7) Summary

Shrinkage Estimators (Known Variances)

Hierarchical model \Rightarrow Shrinkage estimators [Example: temperature.] (weighted averages of evidence from 'Prior' and evidence from 'Data').

Shrinkage Estimators (Known Variances)

Hierarchical model \Rightarrow Shrinkage estimators [Example: temperature.] (weighted averages of evidence from 'Prior' and evidence from 'Data').

$$
\widehat{B}_{i}=W_{i} b_{i}+\left(1-W_{i}\right)\left(\bar{y}_{i \cdot}^{\prime}-\bar{G}_{i}\right), \quad \widehat{G}_{j}=\bar{y}_{\cdot j}^{\prime}-\bar{B}_{i},
$$

where

$$
W_{i}=\frac{\tau_{i}^{-2}}{\tau_{i}^{-2}+\left|J_{i}\right| \sigma_{i}^{-2}}
$$

are the precisions of the direct information in the b_{i} relative to the indirect information for estimating the B_{i} with

$$
\bar{G}_{i}=\frac{\sum_{j \in J_{i}} \widehat{G}_{j} \sigma_{i}^{-2}}{\sum_{j \in J_{i}} \sigma_{i}^{-2}}, \quad \bar{B}_{j}=\frac{\sum_{i \in \ell_{j}} \widehat{B}_{i} \sigma_{i}^{-2}}{\sum_{i \in \ell_{j}} \sigma_{i}^{-2}}, \bar{y}_{i \cdot}^{\prime}=\frac{\sum_{j \in J_{i}} y_{i j}^{\prime} \sigma_{i}^{-2}}{\sum_{j \in J_{i}} \sigma_{i}^{-2}}, \quad \bar{y}_{\cdot j}^{\prime}=\frac{\sum_{i \in \ell_{j}} y_{i j}^{\prime} \sigma_{i}^{-2}}{\sum_{i \in I_{j}} \sigma_{i}^{-2}} .
$$

Shrinkage Estimators (A special case)

Assume that $G_{j}=g_{j}$ is known, i.e. fluxes known apriori. Then

$$
\widehat{A}_{i}=\widehat{A}_{i}=a_{i}^{W_{i}}\left[\left(\tilde{c}_{i} \cdot \tilde{f}_{i}^{-1}\right) e^{\sigma_{i}^{2} / 2}\right]^{1-W_{i}}
$$

where \tilde{c}_{i}. and \tilde{f}_{i} are the geometric means,

$$
\tilde{c}_{i .}=\left[\prod_{j \in J_{i}} c_{i j}\right]^{1 / M_{i}} \text { and } \tilde{f}_{i}=\left[\prod_{j \in J_{i}} f_{j}\right]^{1 / M_{i}} .
$$

(1) Introduction

(2) Scientific and Statistical Models

(3) Bayesian Hierarchical Model
(4) Shrinkage Estimators
(5) Bayesian Computation
(6) Numerical Results
(7) Summary

Bayesian Computation: MCMC

Markov chain Monte Carlo

Construct a biased random walk that explores target dist $P^{\star}(x)$

Markov steps, $x_{t} \sim T\left(x_{t} \leftarrow x_{t-1}\right)$

MCMC gives approximate, correlated samples from $P^{\star}(x)$

Bayesian Computation: MCMC

Increase in density:

Decrease in density:
M. Dümcke

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

- Gibbs Sampling: update parameters one-at-a-time.

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

- Gibbs Sampling: update parameters one-at-a-time.
- Block Gibbs Sampling: update vectors of parameters.

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

- Gibbs Sampling: update parameters one-at-a-time.
- Block Gibbs Sampling: update vectors of parameters.
- The joint distribution of the B_{i} and G_{j} is Gaussian.

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

- Gibbs Sampling: update parameters one-at-a-time.
- Block Gibbs Sampling: update vectors of parameters.
- The joint distribution of the B_{i} and G_{j} is Gaussian.
- Hamiltonian Monte Carlo (HMC) - STAN package.

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

- Gibbs Sampling: update parameters one-at-a-time.
- Block Gibbs Sampling: update vectors of parameters.
- The joint distribution of the B_{i} and G_{j} is Gaussian.
- Hamiltonian Monte Carlo (HMC) - STAN package.
- Highly correlated parameters, high-dim parameter space.

Bayesian Computation (STAN)

From STAN homepage -

Users specify log density functions in Stan's probabilistic programming language and get:

- full Bayesian statistical inference with MCMC sampling (NUTS, HMC)
- approximate Bayesian inference with variational inference (ADVI)
- penalized maximum likelihood estimation with optimization (L-BFGS)

Bayesian Computation (STAN Example)

Start by writing a Stan program for the model.

```
// saved as 8schools.stan
data {
    int<lower=0> J; // number of schools
    real y[J]; // estimated treatment effects
    real<lower=0> sigma[J]; // s.e. of effect estimates
}
parameters {
    real mu;
    real<lower=0> tau;
    real eta[J];
}
transformed parameters {
    real theta[J];
    for (j in 1:J)
        theta[j] = mu + tau * eta[j];
}
model {
    target += normal_lpdf(eta | 0, 1);
    target += normal_lpdf(y | theta, sigma);
}
```


Bayesian Computation (STAN Example)

Assuming we have the 8schools.stan file in our working directory, we can prepare the data and fit the model as the following R code shows.

```
schools_dat <- list(J = 8,
    y = c(28, 8, -3, 7, -1, 1, 18, 12),
    sigma = c(15, 10, 16, 11, 9, 11, 10, 18))
fit <- stan(file = '8schools.stan', data = schools_dat,
    iter = 1000, chains = 4)
```


Bayesian Computation (STAN Example)

```
> print(fit, digits = 1)
Inference for Stan model: 8schools.
4 chains, each with iter=1000; warmup=500; thin=1;
post-warmup draws per chain=500, total post-warmup draws=2000.
```

	mean	se_mean	sd	2.5%	25%	50%	75%	97.5%	n_eff	Rhat
mu	8.2	0.2	5.4	-1.9	4.8	8.1	11.3	19.3	480	1
tau	6.8	0.3	6.2	0.3	2.5	5.2	9.2	21.7	425	1
eta[1]	0.4	0.0	1.0	-1.5	-0.3	0.4	1.0	2.2	2000	1
eta[2]	0.0	0.0	0.8	-1.7	-0.6	0.0	0.5	1.7	2000	1
eta[3]	-0.2	0.0	1.0	-2.1	-0.9	-0.2	0.4	1.7	2000	1
eta[4]	-0.1	0.0	0.9	-1.8	-0.7	-0.1	0.5	1.7	2000	1
eta[5]	-0.4	0.0	0.9	-2.1	-1.0	-0.4	0.2	1.4	2000	1
eta[6]	-0.2	0.0	0.9	-1.9	-0.8	-0.2	0.4	1.5	1731	1
eta[7]	0.3	0.0	0.9	-1.4	-0.2	0.4	0.9	2.0	1507	1
eta[8]	0.0	0.0	0.9	-1.9	-0.6	0.0	0.7	1.8	1988	1
theta[1]	11.5	0.3	8.8	-2.4	5.9	10.1	15.6	32.9	977	1
theta[2]	7.8	0.1	6.2	-4.7	4.1	7.9	11.6	20.3	2000	1
theta[3]	6.1	0.2	7.7	-11.2	2.1	6.4	10.5	20.2	2000	1
theta[4]	7.6	0.1	6.5	-4.9	3.8	7.8	11.4	21.3	2000	1
theta[5]	5.0	0.1	6.6	-9.3	1.2	5.6	9.3	16.7	2000	1
theta[6]	6.2	0.2	6.7	-8.2	2.2	6.5	10.5	18.5	2000	1
theta[7]	10.8	0.2	7.0	-1.3	6.1	10.1	15.1	26.8	2000	1
theta[8]	8.7	0.2	8.2	-7.3	3.9	8.4	12.8	27.2	1446	1
lp_	-39.5	0.1	2.6	-45.1	-41.2	-39.4	-37.7	-35.1	590	1

Samples were drawn using NUTS(diag_e) at Fri May 5 10:41:43 2017. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

(1) Introduction

(2) Scientific and Statistical Models

(3) Bayesian Hierarchical Model
(4) Shrinkage Estimators
(5) Bayesian Computation
(6) Numerical Results
(7) Summary

Numerical Results (E0102)

Recap: Highly ionized Oxygen (2 lines). Neon (2 lines). 13 detectors over 4 telescopes, Chandra (ACIS-S with \& without HETG, ACIS-I), XMM Newton (RGS, EPIC-MOS, EPIC-pn), Suzaku (XIS), \& Swift (XRT).

Numerical Results (E0102)

(1) Introduction

(2) Scientific and Statistical Models
(3) Bayesian Hierarchical Model
(4) Shrinkage Estimators
(5) Bayesian Computation
(6) Numerical Results
(7) Summary

Summary

Statistics

(1) Multiplicative mean modeling: log-Normal hierarchical model.

Summary

Statistics

(1) Multiplicative mean modeling: log-Normal hierarchical model.
(2) Shrinkage estimators.

Summary

Statistics

(1) Multiplicative mean modeling: log-Normal hierarchical model.
(2) Shrinkage estimators.
(3) Bayesian computation: MCMC \& STAN.

Summary

Statistics

(1) Multiplicative mean modeling:
log-Normal hierarchical model.
(2) Shrinkage estimators.
(3) Bayesian computation: MCMC \& STAN.
(9) The potential pitfalls of assuming 'known' variances.

Summary

Statistics

(1) Multiplicative mean modeling:

> log-Normal hierarchical model.
(2) Shrinkage estimators.
(3) Bayesian computation: MCMC \& STAN.
(9) The potential pitfalls of assuming 'known' variances.

Astronomy
(1) Adjustments of effective areas of each instrument.

Summary

Statistics

(1) Multiplicative mean modeling:

> log-Normal hierarchical model.
(2) Shrinkage estimators.
(3) Bayesian computation: MCMC \& STAN.
(9) The potential pitfalls of assuming 'known' variances.

Astronomy

(1) Adjustments of effective areas of each instrument.
(2) Calibration concordance achieved.

Acknowledgement

Xufei Wang (Harvard), Xiao-Li Meng (Harvard), David van Dyk (ICL), Herman Marshall (MIT) \& Vinay Kashyap (cfA)

Numerical Results (XCAL)

- XCAL data: Bright active galactic nuclei from the XMM-Newton cross-calibration sample.

Numerical Results (XCAL)

- XCAL data: Bright active galactic nuclei from the XMM-Newton cross-calibration sample.
- The "pileup": Image data are clipped to eliminate the regions affected by pileup, determined using epatplot.

Numerical Results (XCAL)

- XCAL data: Bright active galactic nuclei from the XMM-Newton cross-calibration sample.
- The "pileup": Image data are clipped to eliminate the regions affected by pileup, determined using epatplot.
- Three data sets: the hard, medium, and soft energy bands.

Numerical Results (XCAL)

- XCAL data: Bright active galactic nuclei from the XMM-Newton cross-calibration sample.
- The "pileup": Image data are clipped to eliminate the regions affected by pileup, determined using epatplot.
- Three data sets: the hard, medium, and soft energy bands.
- Three detectors: MOS1, MOS2 and pn.

Numerical Results (XCAL)

- XCAL data: Bright active galactic nuclei from the XMM-Newton cross-calibration sample.
- The "pileup": Image data are clipped to eliminate the regions affected by pileup, determined using epatplot.
- Three data sets: the hard, medium, and soft energy bands.
- Three detectors: MOS1, MOS2 and pn.
- Sources: 94 (hard band), 103 (medium band), and 108 (soft band).

Numerical Results (XCAL)

