The Bayesian Statistics behind Calibration Concordance

Yang Chen

Harvard University

June 5, 2017

Yang Chen (Harvard University)

Calibration Concordance

June 5, 2017 1 / 35

Outline

Introduction

- 2 Scientific and Statistical Models
- 3 Bayesian Hierarchical Model
- 4 Shrinkage Estimators
- 5 Bayesian Computation
- 6 Numerical Results

Summary

- Scientific and Statistical Models
- 3 Bayesian Hierarchical Model
- 4 Shrinkage Estimators
- 5 Bayesian Computation
- 6 Numerical Results

E0102 – the remnant of a supernova that exploded in a neighboring galaxy known as the Small Magellanic Cloud.

Four "sources" - spectral lines that appear in the E0102 spectrum.

2 lines — Hydrogen like O VIII at 18.969Å & the resonance line of O VII from the Helium like triplet at 21.805Å.
2 lines – Hydrogen like NeX at 12.135Å & the resonance line of Ne IX from the Helium like triplet at 13.447Å.

13 detectors over 4 telescopes, *Chandra* (ACIS-S with and without HETG, and ACIS-I), XMM-*Newton* (RGS, EPIC-MOS, EPIC-pn), *Suzaku* (XIS), and *Swift* (XRT). (Plucinsky et al. 2017).

i = [RGS1, RGS2, HETG-MEG, ACIS-S3, MOS1, MOS2, pn, XIS0, XIS1, XRT] **x** [560-574 eV, 654 eV, 905-922 eV, 1022 eV] (*i*=1..10,11..20,21..30,31..40)

j = E0102 fluxes in [OVII, OVIII, NeIX, NeX] (j=1..4)

- $c_{1,1} = observed counts in RGS2/[560-574 eV], c_{12,2} = in HETG-MEG/[654 eV], c_{23,3} = in ACIS-S3/[905-922 eV], etc.$
- a_i = effective area, f_j = expected flux, α_{ij} = exposure time of instrument *i* for source *j* (in this case, α_{k(-)} are identical for k={l, l+10, l+20, l+30}, l=1..10)

- *N* Instruments with true effective area A_i , $1 \le i \le N$.
 - For each instrument *i*, we know estimated $a_i (\approx A_i)$ but not A_i .

- N Instruments with true effective area A_i , $1 \le i \le N$.
 - For each instrument *i*, we know estimated $a_i (\approx A_i)$ but not A_i .
- *M* Sources with fluxes F_j , $1 \le j \le M$.
 - For each source j, F_j is unknown.

- N Instruments with true effective area A_i , $1 \le i \le N$.
 - For each instrument *i*, we know estimated $a_i (\approx A_i)$ but not A_i .
- *M* Sources with fluxes F_j , $1 \le j \le M$.
 - For each source j, F_j is unknown.
- Photon counts c_{ij} : from measuring flux F_j with instrument *i*.

- N Instruments with true effective area A_i , $1 \le i \le N$.
 - For each instrument *i*, we know estimated $a_i (\approx A_i)$ but not A_i .
- *M* Sources with fluxes F_j , $1 \le j \le M$.
 - For each source j, F_j is unknown.
- Photon counts c_{ij} : from measuring flux F_j with instrument *i*.
- Lower cases: data / estimators. Upper cases: parameter / estimand.

Notations

- N Instruments with true effective area A_i , $1 \le i \le N$.
 - For each instrument *i*, we know estimated $a_i (\approx A_i)$ but not A_i .
- *M* Sources with fluxes F_j , $1 \le j \le M$.
 - For each source j, F_j is unknown.
- Photon counts c_{ij} : from measuring flux F_j with instrument *i*.
- Lower cases: data / estimators. Upper cases: parameter / estimand.

Original Questions

Systematic errors in comparing effective areas \Rightarrow absolute measurements.

Notations

- N Instruments with true effective area A_i , $1 \le i \le N$.
 - For each instrument *i*, we know estimated $a_i (\approx A_i)$ but not A_i .
- *M* Sources with fluxes F_j , $1 \le j \le M$.
 - For each source j, F_j is unknown.
- Photon counts c_{ij} : from measuring flux F_j with instrument *i*.
- Lower cases: data / estimators. Upper cases: parameter / estimand.

Original Questions

Systematic errors in comparing effective areas \Rightarrow absolute measurements.

- **9** How to adjust A_i s.t. $c_{ij}/A_i \approx F_j$ within statistical uncertainty?
- **2** How to estimate the systematic error on the A_i ?

2 Scientific and Statistical Models

- 3 Bayesian Hierarchical Model
- 4 Shrinkage Estimators
- 5 Bayesian Computation
- 6 Numerical Results

Scientific and Statistical Models

Scientific Model

Multiplicative in original scale and additive on the log scale.

where log area = $B_i = \log A_i$, log flux = $G_j = \log F_j$; let $T_{ij} = 1$.

Scientific and Statistical Models

Scientific Model

Multiplicative in original scale and additive on the log scale.

Counts = Exposure × Effective Area × Flux, $C_{ii} = T_{ii}A_iF_i$, $\Leftrightarrow \log C_{ii} = B_i + G_i$,

where log area $= B_i = \log A_i$, log flux $= G_j = \log F_j$; let $T_{ij} = 1$.

Statistical Model

log counts $y_{ij} = \log c_{ij} = \alpha_{ij} + B_i + G_j + e_{ij}$, $e_{ij} \stackrel{indep}{\sim} \mathcal{N}(0, \sigma_{ij}^2)$; where $\alpha_{ij} = -0.5\sigma_{ij}^2$ to ensure $E(c_{ij}) = C_{ij} = A_i F_j$.

- Known Variances: σ_{ij} known.
- **Unknown Variances**: $\sigma_{ij} = \sigma_i$ unknown.

- 4 Shrinkage Estimators
- 5 Bayesian Computation
- 6 Numerical Results

Log-Normal Hierarchical Model.

log counts | area & flux & vari

& flux & variance
$$\stackrel{\text{indep}}{\sim}$$
 Gaussian distribution,
 $y_{ij} \mid B_i, \ G_j, \ \sigma_i^2 \stackrel{\text{indep}}{\sim} \mathcal{N}\left(-\frac{\sigma_i^2}{2} + B_i + G_j, \ \sigma_i^2\right),$

,

the discus

٠

,

Log-Normal Hierarchical Model.

log counts |*area* & *flux* & *variance* $\stackrel{\text{indep}}{\sim}$ Gaussian distribution, $y_{ij} \mid B_i, \ G_j, \ \sigma_i^2 \stackrel{\text{indep}}{\sim} \mathcal{N}\left(-\frac{\sigma_i^2}{2} + B_i + G_j, \ \sigma_i^2\right),$

Setting up priors for unknowns.

1

2 3 ,

Log-Normal Hierarchical Model.

log counts |*area & flux & variance* $\stackrel{\text{indep}}{\sim}$ Gaussian distribution, $y_{ij} \mid B_i, \ G_j, \ \sigma_i^2 \stackrel{\text{indep}}{\sim} \mathcal{N}\left(-\frac{\sigma_i^2}{2} + B_i + G_j, \ \sigma_i^2\right),$

Setting up priors for unknowns.

- Prior for log-flux G_j: flat (improper, non-informative).
- **2** Prior for log-area B_i : $\mathcal{N}(b_i, \tau_i^2)$ (conjugate, proper).

3

,

Log-Normal Hierarchical Model.

log counts |*area* & *flux* & *variance* $\stackrel{\text{indep}}{\sim}$ Gaussian distribution, $y_{ij} \mid B_i, \ G_j, \ \sigma_i^2 \stackrel{\text{indep}}{\sim} \mathcal{N}\left(-\frac{\sigma_i^2}{2} + B_i + G_j, \ \sigma_i^2\right),$ $B_i \stackrel{\text{indep}}{\sim} \mathcal{N}(b_i, \ \tau_i^2), \ G_i \stackrel{\text{indep}}{\sim} \text{flat prior},$

Setting up priors for unknowns.

- Prior for log-flux G_j: flat (improper, non-informative).
- **2** Prior for log-area B_i : $\mathcal{N}(b_i, \tau_i^2)$ (conjugate, proper).

3

Log-Normal Hierarchical Model.

log counts |*area* & *flux* & *variance* $\stackrel{\text{indep}}{\sim}$ Gaussian distribution, $y_{ij} \mid B_i, \ G_j, \ \sigma_i^2 \stackrel{\text{indep}}{\sim} \mathcal{N}\left(-\frac{\sigma_i^2}{2} + B_i + G_j, \ \sigma_i^2\right),$ $B_i \stackrel{\text{indep}}{\sim} \mathcal{N}(b_i, \ \tau_i^2), \ G_i \stackrel{\text{indep}}{\sim} \text{flat prior},$

Setting up priors for unknowns.

- Prior for log-flux G_j : flat (improper, non-informative).
- **2** Prior for log-area B_i : $\mathcal{N}(b_i, \tau_i^2)$ (conjugate, proper).
- **(a)** Unknown variance: Prior for σ_i^2 : inverse Gamma (conjugate, proper).

Log-Normal Hierarchical Model.

 $\begin{array}{rcl} \log \ {\rm counts} \ | {\it area} \ \& {\it flux} \ \& {\it variance} & \stackrel{{\rm indep}}{\sim} & {\rm Gaussian} \ {\rm distribution}, \\ y_{ij} \ | \ B_i, \ G_j, \ \sigma_i^2 & \stackrel{{\rm indep}}{\sim} & {\cal N} \left(- \frac{\sigma_i^2}{2} + B_i + G_j, \ \sigma_i^2 \right), \\ B_i & \stackrel{{\rm indep}}{\sim} & {\cal N}(b_i, \ \tau_i^2), \ G_j & \stackrel{{\rm indep}}{\sim} \ {\rm flat} \ {\rm prior}, \\ {\rm Unknown \ variance:} \ \sigma_i^2 & \stackrel{{\rm indep}}{\sim} & {\rm Inv-Gamma}(df_g, \ \beta_g). \end{array}$

Setting up priors for unknowns.

- Prior for log-flux G_j : flat (improper, non-informative).
- **2** Prior for log-area B_i : $\mathcal{N}(b_i, \tau_i^2)$ (conjugate, proper).
- **(a)** Unknown variance: Prior for σ_i^2 : inverse Gamma (conjugate, proper).

Introduction

- 2 Scientific and Statistical Models
- 3 Bayesian Hierarchical Model
- 4 Shrinkage Estimators
- 5 Bayesian Computation
- 6 Numerical Results

7 Summary

Shrinkage Estimators (Known Variances)

Hierarchical model \Rightarrow Shrinkage estimators [Example: temperature.] (weighted averages of evidence from 'Prior' and evidence from 'Data').

Shrinkage Estimators (Known Variances)

Hierarchical model \Rightarrow Shrinkage estimators [Example: temperature.] (weighted averages of evidence from 'Prior' and evidence from 'Data').

$$\widehat{B}_i = W_i b_i + (1-W_i)(ar{y}'_{i\cdot}-ar{G}_i), \quad \widehat{G}_j = ar{y}'_{\cdot j} - ar{B}_i,$$

where

$$W_i = rac{{\tau_i}^{-2}}{{\tau_i}^{-2} + |J_i|{\sigma_i}^{-2}}$$

are the precisions of the direct information in the b_i relative to the indirect information for estimating the B_i with

$$\bar{G}_{i} = \frac{\sum_{j \in J_{i}} \hat{G}_{j} \sigma_{i}^{-2}}{\sum_{j \in J_{i}} \sigma_{i}^{-2}}, \quad \bar{B}_{j} = \frac{\sum_{i \in I_{j}} \hat{B}_{i} \sigma_{i}^{-2}}{\sum_{i \in I_{j}} \sigma_{i}^{-2}}, \quad \bar{y}_{i.}' = \frac{\sum_{j \in J_{i}} y_{ij}' \sigma_{i}^{-2}}{\sum_{j \in J_{i}} \sigma_{i}^{-2}}, \quad \bar{y}_{.j}' = \frac{\sum_{i \in I_{j}} y_{ij}' \sigma_{i}^{-2}}{\sum_{i \in I_{j}} \sigma_{i}^{-2}}.$$

Shrinkage Estimators (A special case)

Assume that $G_j = g_j$ is known, i.e. fluxes known apriori. Then

$$\widehat{A}_i = \widehat{A}_i = a_i^{W_i} \left[(\widetilde{c}_i.\widetilde{f}_i^{-1}) e^{\sigma_i^2/2}
ight]^{1-W_i},$$

where \tilde{c}_i and \tilde{f}_i are the geometric means,

$$\tilde{c}_{i\cdot} = \left[\prod_{j\in J_i} c_{ij}\right]^{1/M_i}$$
 and $\tilde{f}_i = \left[\prod_{j\in J_i} f_j\right]^{1/M_i}$

.

Introduction

- 2 Scientific and Statistical Models
- 3 Bayesian Hierarchical Model
- 4 Shrinkage Estimators
- 5 Bayesian Computation
 - 6 Numerical Results

7 Summary

Bayesian Computation: MCMC

Markov chain Monte Carlo

Construct a biased random walk that explores target dist $P^{\star}(x)$

Markov steps, $x_t \sim T(x_t \leftarrow x_{t-1})$

MCMC gives approximate, correlated samples from $P^{\star}(x)$

Bayesian Computation: MCMC

Markov Chain Monte Carlo (MCMC) algorithms.

• Gibbs Sampling: update parameters one-at-a-time.

- Gibbs Sampling: update parameters one-at-a-time.
- Block Gibbs Sampling: update vectors of parameters.

- Gibbs Sampling: update parameters one-at-a-time.
- Block Gibbs Sampling: update vectors of parameters.
 - The joint distribution of the B_i and G_j is Gaussian.

- Gibbs Sampling: update parameters one-at-a-time.
- Block Gibbs Sampling: update vectors of parameters.
 - The joint distribution of the B_i and G_j is Gaussian.
- Hamiltonian Monte Carlo (HMC) STAN package.

- Gibbs Sampling: update parameters one-at-a-time.
- Block Gibbs Sampling: update vectors of parameters.
 - The joint distribution of the B_i and G_j is Gaussian.
- Hamiltonian Monte Carlo (HMC) STAN package.
 - Highly correlated parameters, high-dim parameter space.

Bayesian Computation (STAN)

From STAN homepage —

Users specify log density functions in Stan's probabilistic programming language and get:

- full Bayesian statistical inference with MCMC sampling (NUTS, HMC)
- approximate Bayesian inference with variational inference (ADVI)
- penalized maximum likelihood estimation with optimization (L-BFGS)

Bayesian Computation (STAN Example)

Start by writing a Stan program for the model.

```
// saved as 8schools.stan
data {
  int<lower=0> J: // number of schools
  real v[J]; // estimated treatment effects
  real<lower=0> sigma[J]; // s.e. of effect estimates
3
parameters {
  real mu:
  real<lower=0> tau:
  real eta[]]:
}
transformed parameters {
  real theta[J];
  for (j in 1:J)
    theta[j] = mu + tau * eta[j];
}
model {
  target += normal_lpdf(eta | 0, 1);
  target += normal_lpdf(y | theta, sigma);
}
```

Bayesian Computation (STAN Example)

Assuming we have the 8schools.stan file in our working directory, we can prepare the data and fit the model as the following R code shows.

Bayesian Computation (STAN Example)

> print(fit, digits = 1)
Inference for Stan model: 8schools.
4 chains, each with iter=1000; warmup=500; thin=1;
post=warmup draws per chain=500, total post=warmup draws=2000.

	mean	se_mean	sd	2.5%	25%	50%	75%	97.5%	n_eff	Rhat
mu	8.2	0.2	5.4	-1.9	4.8	8.1	11.3	19.3	480	1
tau	6.8	0.3	6.2	0.3	2.5	5.2	9.2	21.7	425	1
eta[1]	0.4	0.0	1.0	-1.5	-0.3	0.4	1.0	2.2	2000	1
eta[2]	0.0	0.0	0.8	-1.7	-0.6	0.0	0.5	1.7	2000	1
eta[3]	-0.2	0.0	1.0	-2.1	-0.9	-0.2	0.4	1.7	2000	1
eta[4]	-0.1	0.0	0.9	-1.8	-0.7	-0.1	0.5	1.7	2000	1
eta[5]	-0.4	0.0	0.9	-2.1	-1.0	-0.4	0.2	1.4	2000	1
eta[6]	-0.2	0.0	0.9	-1.9	-0.8	-0.2	0.4	1.5	1731	1
eta[7]	0.3	0.0	0.9	-1.4	-0.2	0.4	0.9	2.0	1507	1
eta[8]	0.0	0.0	0.9	-1.9	-0.6	0.0	0.7	1.8	1988	1
theta[1]	11.5	0.3	8.8	-2.4	5.9	10.1	15.6	32.9	977	1
theta[2]	7.8	0.1	6.2	-4.7	4.1	7.9	11.6	20.3	2000	1
theta[3]	6.1	0.2	7.7	-11.2	2.1	6.4	10.5	20.2	2000	1
theta[4]	7.6	0.1	6.5	-4.9	3.8	7.8	11.4	21.3	2000	1
theta[5]	5.0	0.1	6.6	-9.3	1.2	5.6	9.3	16.7	2000	1
theta[6]	6.2	0.2	6.7	-8.2	2.2	6.5	10.5	18.5	2000	1
theta[7]	10.8	0.2	7.0	-1.3	6.1	10.1	15.1	26.8	2000	1
theta[8]	8.7	0.2	8.2	-7.3	3.9	8.4	12.8	27.2	1446	1
lp	-39.5	0.1	2.6	-45.1	-41.2	-39.4	-37.7	-35.1	590	1

Samples were drawn using NUTS(diag_e) at Fri May 5 10:41:43 2017. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

Yang Chen (Harvard University)

Calibration Concordance

Introduction

- 2 Scientific and Statistical Models
- 3 Bayesian Hierarchical Model
- 4 Shrinkage Estimators
- 5 Bayesian Computation

6 Numerical Results

Numerical Results (E0102)

Recap: Highly ionized Oxygen (2 lines). Neon (2 lines). 13 detectors over 4 telescopes, *Chandra* (ACIS-S with & without HETG, ACIS-I), XMM - *Newton* (RGS, EPIC-MOS, EPIC-pn), *Suzaku* (XIS), & *Swift* (XRT).

Numerical Results (E0102)

O2 (STAN)

Yang Chen (Harvard University)

Calibration Concordance

Introduction

- 2 Scientific and Statistical Models
- 3 Bayesian Hierarchical Model
- 4 Shrinkage Estimators
- 5 Bayesian Computation
- 6 Numerical Results

Statistics

Multiplicative mean modeling:

log-Normal hierarchical model.

Statistics

Multiplicative mean modeling:

log-Normal hierarchical model.

Shrinkage estimators.

Statistics

Multiplicative mean modeling:

log-Normal hierarchical model.

- Shrinkage estimators.
- **③** Bayesian computation: MCMC & STAN.

Statistics

Multiplicative mean modeling:

log-Normal hierarchical model.

- Shrinkage estimators.
- **③** Bayesian computation: MCMC & STAN.
- The potential pitfalls of assuming 'known' variances.

Statistics

Multiplicative mean modeling:

log-Normal hierarchical model.

- Shrinkage estimators.
- Bayesian computation: MCMC & STAN.
- The potential pitfalls of assuming 'known' variances.

Astronomy

Adjustments of effective areas of each instrument.

Statistics

Multiplicative mean modeling:

log-Normal hierarchical model.

- Shrinkage estimators.
- Bayesian computation: MCMC & STAN.
- The potential pitfalls of assuming 'known' variances.

Astronomy

- Adjustments of effective areas of each instrument.
- ② Calibration concordance achieved.

Acknowledgement

Xufei Wang (Harvard), Xiao-Li Meng (Harvard), David van Dyk (ICL), Herman Marshall (MIT) & Vinay Kashyap (cfA)

Yang Chen (Harvard University)

Calibration Concordance

• **XCAL data**: Bright active galactic nuclei from the XMM-Newton cross-calibration sample.

- **XCAL data**: Bright active galactic nuclei from the XMM-Newton cross-calibration sample.
- **The "pileup"**: Image data are clipped to eliminate the regions affected by pileup, determined using epatplot.

- **XCAL data**: Bright active galactic nuclei from the XMM-Newton cross-calibration sample.
- **The "pileup"**: Image data are clipped to eliminate the regions affected by pileup, determined using epatplot.
- Three data sets: the hard, medium, and soft energy bands.

- **XCAL data**: Bright active galactic nuclei from the XMM-Newton cross-calibration sample.
- **The "pileup"**: Image data are clipped to eliminate the regions affected by pileup, determined using epatplot.
- Three data sets: the hard, medium, and soft energy bands.
- Three detectors: MOS1, MOS2 and pn.

- **XCAL data**: Bright active galactic nuclei from the XMM-Newton cross-calibration sample.
- **The "pileup"**: Image data are clipped to eliminate the regions affected by pileup, determined using epatplot.
- Three data sets: the hard, medium, and soft energy bands.
- Three detectors: MOS1, MOS2 and pn.
- Sources: 94 (hard band), 103 (medium band), and 108 (soft band).

