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Abstract. In low-count discrete photon imaging systems, such as in high energy
astrophysics, the spatial distribution of a very few (or no!) photons per pixel can indeed
carry important information about the shape of interestingemission. Our Low-counts
Image Restoration and Analysis package,LIRA, was designed to: ‘deconvolve’ any
unknown sky components; give a fully Poisson ‘goodness-of-fit’ for any best-fit model;
and quantify uncertainties on the existence and shape of unknown sky components.
LIRAdoes this without resorting toχ2 or rebinning, which can lose high-resolution in-
formation. However, since it combines a Poisson-specific multi-scale model for the sky
with a full instrument response, within a (Bayesian) probablility framework, sampled
via MCMC — running it thoughtfully requires understanding several key areas.

To this end, we have created and are releasing a ‘teaching’ version of LIRA.
It is implemented in R (cran.r-project.org). The accompanying tutorial and R-scripts
step through all the basic analysis steps, from simple multi-scale representation and
deconvolution; to model-testing; setting quantitative limits; and even simple ways of
incorporating uncertainties in the instrument response.

1. Intro: Wonder, Glee, Skepticism, and LIRA

As one confronts beautiful, beautifully processed, astronomical images –such as many
in these proceedings – who does not feel the pull of wonder? As well, when one recog-
nizes that a newly visible feature appears to match one’s theory, isn’t there a sharp pull
of glee? Yet, in this paper, we advocate doubt: “where are the error bars?”.
LIRAwas developed precisely to quantify this doubt, for low-count Poisson data.

To do this,LIRAbrings together several different kinds of machinery, from Multi-scale
(MS) models to Markov chain Monte Carlo (McMC) in a Bayesian framework [1,2,3].
Although made for Poisson counts, our schema of: a flexible or non- or semi-parametric
model; with a background or Null model; within a full likelihood framework; canserve
as a model for more general data. The combination can at first feel un-intutive for
even seasoned researchers. Hence, we have created a ‘teaching’version, with many
examples, within the easy-to-use public statistical package ‘R’.LIRA is available from:
nathanmstein at gmail.com or aconnors at eurekabayes.com
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Here, we briefly exhibit parts of one of the teaching examples. It is basedon a
hypothetical ‘skytruth’ of a diffuse component (a broad letter E) and a cluster of point
sources (also forming a letter E) on a flat background, in 128x128 bins,as shown in the
first figure. The instrument smearing, or point-spread function (PSF),is assumed to be a
circular Gauss-Normal distribution withσ = 1.5 bins. Simulated Poisson dataD based
on these is shown in the 2nd panel. We display a ‘Null Model’ of the diffuse emission
based on hypothetical measurements and theory: a broad ‘E’ – in the 3rd panel. The
simulated data, PSF, and Null model, are inputs toLIRA; one of the outputs is the mean
‘mismatch’ between the data and theory, shown in the last panel of the 1st figure.

SkyTruth(unconvolved); Simulated Data; Null Model(unconvolved);LIRA result

2. LIRA Mechanics:

LIRAcan be termed a ‘forward-fitting’ likelihood-based method, built under a ’Bayesian
umbrellla’. That is, we use a Bayesian framework to successively add ‘spokes’ to the
total likelihood: Poisson likelihood of the dataD (red); given a Null Model with pa-
rametersθ, be designated byM(θ) (blue); and the Instrument Response byIR (brown).
Then, using Bayes’ theorem, the posterior probability can be written as in thefirst panel
of the second figure, where @ designates a convolution.

Bayes Umbrellas: Adding a apoke (right panel; green).

In this form, it is easy for us to add amodel/data mis-match‘spoke’ (green) to our
Bayesian umbrella. In our low-count regime, we formulate themode/data mis-match
term to be aprefactortimes the null model, plus a Poisson-tailoredmulti-scale model
[1,2,4] that will handle both fine details and broad features. But now thereare a great
many parameters: rates at each successively finer multi-scale level, given the previous
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level; tuning (or smoothing or regluarization) hyper-parmeters, for eachlevel; the Null
Model prefactor. Hence rather than e.g. a Powell or Levenberg-Marquardt method for
finding a mode, we use Markov chain Monte Carlo to map out the full probabilityspace.
This allows us to get both a ‘best fit’, and a way to express uncertainties onany feature
from the data/model mis-match.

3. Running LIRA

In the next several figures, we illustrate McMC in action, mapping out the shape of our
posterior likelihood (or Bayesian Umbrella from the second figure). It shows both a
‘burn-in’ phase and a converged phase. Finally we illustrate that, in order to get full
quantitative limits, we must perform the sameLIRAanalysis on a handful of simulated
data sets based on the Null Model (convolved with the instrument response). We then
use a small subset of the parameters — in this case, the total counts infered tobe in the
multi-scale (MS) component — as asummary statisticof the ‘distance’ between the
data and the null of the summary statistic give the upper and lower bounds on theshape
of the Data/Null-Model mis-match.

Iteration 005 Two start values: high (top image;‘+’ ); low (bottom image; ‘+’).
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Iteration 125. Two start values: high (top image,‘+’ ); low (bottom image, ‘+’).
Orange arrows roughly indicate burn-in range for high starting values.

LIRAResults, after burn-in. Left: Mean Images from Data (top) vs. Simulated Nulls
(bottom). Right: Distributions of Data (dark colors) vs Simulated Nulls (bright colors).

LIRA Results, limits on shape. Data (top) vs Simulated Null (bottom): Left: lower
5% limit; Middle: Mean; Right: upper 95% limits


