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Typical flow of a Markov−Chain Monte Carlo spectral fitting process, modified to account for uncertainty in calibration

Strategy� Generate a sample of ARFs that represent the unertainty in the e�etive area (Figure 1)� Simulate a set of low-resolution ACIS spetra for a spei� model (in this ase, power-law with index� = 2 and H olumn density NH = 1023 m�2) for 104 and 105 ounts� Compute the posterior probability density funtions (pdfs) for the model parameters for all ombi-nations of spetra and ARFs and test that the statistial unertainty is well determined (Figure2)� Determine the e�et of ARF unertainty on the posterior pdfs (Figure 3)� Estimate the sensitivity of the magnitude of the systemati errors to the number of distint ARFs(Figure 4)� A new MCMC-based mehanism to inlude the ARF unertainty diretly within spetral �tting (Fig-ure 5)� A proposal to extend the HEASARC ARF standard suh that ARF unertainties an be odi�ed forgeneral use based on a prinipal omponent deomposition of the ARFs (Figure 6)

Figure 2: E�et of statistial error on parameter estimates. The posterior pdfs of � and NH alulated for individual pairs of simulated spetrumand ARF are shown for a variety of ases (thin blue histograms). For di�erent spetra adopting the default ARF (left panels), and for a small setof representative spetra but adopting di�erent ARFs (right panels). The pdfs are generated by obtaining parameter draws from a Markov-ChainMonte Carlo (MCMC) algorithm and are binned into a histogram. The thik red stepped histogram represents the pdf generated using the drawsombined from all the runs shown in eah panel. The set of plots on the left are for spetra with 104 ounts and those on the right, for 105 ounts. Notethat the width of the pdf dereases with inreasing ounts, as is expeted: the parameters are better determined when ounts statistis are higher. Alsonote that the pdf width for the umulative ase when the ARF is held unhanging is similar to the pdf width for the individual runs: the ombinedpdf preserves the statistial error inherent in the data while eliminating the o�set biases introdued for individual simulations. The variations in thepdfs when the spetrum is held unhanged while the ARFs are hanged shows that the e�et of the ARF unertainty on the parameters.

Figure 1: Unertainty in ACIS-S e�etive area. The dashed white line shows thedefault e�etive area for a nominal observation at the aimpoint, as a funtion of energy.Numerous e�etive area urves were synthesized by inorporating the unertainties inthe subsystems (see Drake et al. 2007, CCW Poster #109), and these are shown asthe shaded urves that braket the default. Curves are olored aording to how muhthey di�er in toto from the default: blak for those whih exeed the default and redfor the reverse, and the shades represent the extent of the di�erene. Note that thesimulated urves are tangled in a highly omplex manner, and the absolute di�erenebetween the e�etive areas does not translate to a segregation of the urves into spei�regions.

Figure 4: Sensitivity of parameter unertainty on number of tests. The simplest way to aount forthe ARF unertainty is to arry out spetral �ts with di�erent realizations of the ARF and ombine theresulting pdfs to determine the overall error. Clearly, the larger the number of �ts done with separateARFs, the better the estimate will be. This �gure shows the magnitude of the total error (small squarepoints) for di�erent numbers of ARFs used. The left panels are for spetra with 104 ounts and theright panels, for 105 ounts. The upper panels are for � and the lower ones for NH . The red vertialbars denote the auray with whih this error an be determined for any spei� set of ARFs, and aredetermined for eah set of N ARFs by running spetral �ts N � 200 times hoosing di�erent ARFs eahtime. The \true" estimate of the total error is seen to reah an asymptoti value when only N � 20 ARFsare used; inluding more ARFs in the alulation only serves to determine this value more robustly. Foromparison, we also show the systemati error estimate omputed by Drake et al. (2007, SPIE, v6270, p49;see also Poster #109) as horizontal dashed lines. These points are generated by averaging only the best-�tparameter values alulated for a given spetrum while hanging the ARF for eah �t. Generally, thesevalues agree with eah other, though the values based only on the best-�t tend to inreasingly overestimatethe magnitude of the total error as the non-Gaussianity of the pdfs beome more relevant.

Figure 3: E�et of area unertainty on parameter estimates. The posterior pdfs of� and NH alulated by �rst averaging the e�et of the ARFs on individual spetra(thin blue urves) are shown. As in Figure 2, the pdfs are generated using parameterdraws from an MCMC algorithm. The pdf resulting from ombining all the drawsis also shown as the red stepped histogram. These urves inlude the e�ets of bothstatistial and systemati errors, and beause they represent draws from the trueposterior distribution funtions, automatially provide the most optimal desriptionsof the parameter unertainties in the presene of e�etive area unertainties. Notethat the pdfs in the high ounts ase, where the statistial omponent is relativelysuppressed, show that the systemati errors are not Gaussian.

Figure 5: Typial ow of a Markov-Chain Monte Carlo spetral �tting proess, modi�ed to aount forunertainty in alibration. We have shown above (Figures 2, 3 & 4) that the brute fore approah ofarrying out spetral �ts with di�erent simulated ARFs that represent our unertainty in the alibrationworks well and produes reliable estimates of the total error. However, this is extremely ineÆient beausemost of the omputational time is wasted in alulating pdfs for individual ases. It is possible to speedup the proess by two or more orders of magnitude by inorporating the varying ARFs within the alu-lation. Briey, if � are the parameters of interest, we an ompute pdf= p(�jARF;Data)�p(ARF), wherep(ARF) represents the distribution of ARFs. The manner in whih p(ARF) is inluded is shown here fora typial MCMC data ow diagram. The data and alibration (ARFs, RMFs, et.) are ombined witha spetral model, and the program iterates by drawing new samples of the parameter values (generallyas deviations from the urrent values), omputing the new likelihood, and adopting the new parametersas neessary. This proess is slightly hanged with an additional seletion of a new ARF, sampled fromp(ARF), prior to drawing new parameter values. We have implented this hange in an MCMC based spe-tral �tting algorithm, and �nd that we obtain the same pdfs as in Figure 3 with an � 100x improvementin omputational speed. Proposed Extension to ARF standardOne a set of ARFs fAi(Ej); i = 1; NARF ; j = 1; Nbing are generated suh that theyenompass the range of unertainty present in our knowledge of the ARF, the dif-ferenes with respet to the default ARF A0(Ej), ÆAij = Aij � A0j are alulated,and these arry the full unertainty information. The fÆAijg an be deomposedvia a prinipal omponents analysis to generate eigenvalues feig and eigenvetorsf�i(Ej)g. The fration of the variane in fÆAig aounted for by the kth omponentis given by fk = e2k=PNARFi=1 e2i . A typial realization of an ARF an be generatedas fA0j = A0j + ÆAj +PNompk=1 ri ei �ijg where ri � N (0; 1) are Gaussian deviates,ÆAj = (1=NARF )Pi ÆAij is the average deviation from the default, whih is usuallyexpeted to be small and lose to 0 . Nomp is formally equal to the number of ARFsin the sample, but an be redued as needed to disard omponents that are ignorable.Typially, Nomp � 10 � 15 is suÆient to aount for > 99% of the variane. TheA0(Ej) thus generated is used as the draw from p(ARF) in Figure 5.The results of the PCA deomposition an be stored in �les in the same manneras ARFs and distributed widely for inorporating within spetral �tting routines. Wehave adopted the following format for the �le, whih is reminisent of the HEASARCARF standard (CAL/GEN 92-002)� PRIMARY blok: NONE� SPECRESP OFFSET blok: similar to the SPECRESP extension, but ontainingÆAj in plae of A0j in the SPECRESP olumn� PCA EVALUE blok: an array of Nomp values of the eigenvalues ei, stored in asingle olumn� PCA EVECTOR blok: an array of size Nomp � Nbin ontaining the eigenvetors�ij , with eah row in the �le ontaining the full eignevetor for that omponent,and with the rows mathing one-to-one with those in the extension PCA EVALUE.
�+ not neessary to arry out simulations for eah model parameter value+ no simplifying Gaussian assumptions made as to the nature of the error distributions+ not neessary to know how to generate a sample of ARFs that represent the orret distribution ofunertainties+ the e�et of unertainties in spei� regions in the ARF an be dealt with expliitly by hoosing PCAomponents appropriately- requires a �tting engine that uses Markov-Chain Monte Carlo tehniques- are must be taken to ensure that a disarded omponent does not have a large e�et on the analysisin the energy range of interest

Figure 6: Deomposition of the prinipal omponents of variations in thee�etive area. The proedure desribed in Figure 5 relies on the existeneof a sample of simulated ARFs, or the ability of the researher to generatesuh a sample. This is an onerous burden on most astronomers, but there is asimple workaround. We propose that the ARF unertainties be deomposed intotheir most prominent omponents and stored as �les similar to the ARF itself.In order to determine these omponents, we have used Prinipal ComponentsAnalysis (PCA). This is not a unique solution, but is designed to be eminentlypratial. The top 8 omponents of the 1000 ARFs in Figure 1 are shownhere, as deviations from the default ARF, and the shaded regions representingthe range of variation aounted for by eah omponent. The fration of thetotal variane in the ARFs that is explained by a given omponent are shownat the top. The 8 omponents shown here together aount for > 95% of thetotal variane.

We have developed a robust and general method to inorporate e�etive areaalibration unertainties in model �tting of low-resolution spetra. Beausesuh unertainties are ignored during spetral �ts, the error bars derived formodel parameters are generally underestimated. Inorporating them diretlyinto spetral analysis with existing analysis pakages suh as Sherpa and XSPECis not possible without extensive ase-spei� simulations, but it is possibleto do so in a generalized manner in a Markov-Chain Monte Carlo (MCMC)framework. We desribe our implementation of this method here. We use theestimates of ACIS e�etive area unertainties (Drake et al. 2007, SPIE, v6270,p49) in a MCMC setting, applied to simulated ACIS data, to estimate theposterior probability densities of power-law model parameters that inlude thee�ets of suh unertainties.This method is appliable diretly to any spetral model in all parts ofthe orresponding parameters spae. Beause no Gaussian approximations aremade in alulating the error bars, and the full posterior probability densitiesof the parameters are onstruted, the derived parameter bounds are optimallysized. The method is also fast and is easily generalizable to aounting for thesystemati unertainties in any type of multipliative fators.
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