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ABSTRACT

We present a rigorous description of the general problem of aperture photometry in high-energy astrophysics
photon-count images, in which the statistical noise model is Poisson, not Gaussian. We compute the full posterior
probability density function for the expected source intensity for various cases of interest, including the important
cases in which both source and background apertures contain contributions from the source, and when multiple
source apertures partially overlap. A Bayesian approach offers the advantages of allowing one to (1) include explicit
prior information on source intensities, (2) propagate posterior distributions as priors for future observations, and
(3) use Poisson likelihoods, making the treatment valid in the low-counts regime. Elements of this approach have
been implemented in the Chandra Source Catalog.

Key words: methods: data analysis – methods: statistical – X-rays: general

Online-only material: color figures

1. INTRODUCTION

A common problem in astronomy is the estimate of the
intensity of a celestial source, using digital image data that
also include contaminating contributions from sky background
and nearby sources. In optical, infrared, and ultraviolet images,
there are typically sufficient photon events per pixel that a
Gaussian statistical noise model can be assumed, and one may
fit a model spatial profile, including telescope response and
any intrinsic source extent, to the observed event distribution
(see, e.g., Stetson 1987). In X-ray and γ -ray images, however,
there are typically few events per pixel, even for long exposures.
Moreover, the telescope response or point-spread function (PSF)
may vary significantly with photon energy and with location in
the field of view. Its size may range from approximately one
image pixel near the optical axis to several tens of pixels at large
off-axis distances. In such cases, model fitting to the sparse
photon data can become difficult, or at least computationally
expensive, and researchers often resort to simpler aperture
photometry techniques. These involve counting photon events
in a region, or aperture, centered on the nominal source location,
with background determined from event counts in nearby
source-free regions. Net counts are then multiplied by correction
factors to convert counts to flux for an assumed spectral model
and to correct for losses due to detector/telescope efficiency
or apertures whose sizes do not enclose the full PSF at the
source location. The resulting intensities or fluxes are typically
simple algebraic functions of the raw aperture counts, and their
errors are often estimated by using simple propagation of error
techniques which assume a Gaussian statistical noise model.

A number of authors have attacked the problem using
Bayesian statistical techniques, which can naturally incorpo-
rate a Poisson noise model. Loredo (1992) first pointed out the
advantages of such techniques to determine X-ray intensities
for isolated sources, and Kraft et al. (1991) used a Bayesian
formalism to determine confidence bounds on X-ray intensities.
Recently, Laird et al. (2009) considered the astronomically in-
teresting case in which the prior distribution for source intensity
is given by a log N– log S distribution, and showed that this
can naturally account for the sampling bias in intensity near
detection threshold. However, these treatments all assume that

background is either negligible or known and that background
apertures are uncontaminated by source counts. Weisskopf et al.
(2007) carried out a likelihood-based analysis that treats the case
where both source and background apertures contain source con-
tributions, and allows for uncertainties in background measure-
ments. However, their analysis only treats the case of isolated
sources and does not consider any prior information on source
or background intensity.

In this paper, we present a full Bayesian treatment for
the problem and explicitly account for contributions from
multiple sources in both source and background apertures. We
emphasize that we are addressing the problem of estimating
the range in which a source intensity is likely to be found, at
some given probability level, not the probability that the source
is real. The latter is an equally important but separate problem
(Kashyap et al. 2010). We begin in Section 2 with a discussion
of the maximum-likelihood solution to ground the user in our
terminology. In Section 3.1, we present our Bayesian formalism
for the case of an isolated source and extend the treatment
to multiple sources in Section 3.2. In Section 4, we consider
some examples and explore the range of situations where our
treatment is useful, using simulations. We present the detailed
mathematics of our derivations in the Appendices A and B.

2. MAXIMUM-LIKELIHOOD ESTIMATE
FOR NET COUNTS

We derive here the relevant formulae for computing
maximum-likelihood estimates for net counts for an unresolved
source or sources from quantities obtained in aperture photome-
try measurements. We limit our discussion to net counts but note
that other quantities such as source rate or flux can also be ac-
commodated by introducing the appropriate conversion factors
(e.g., exposure or effective area). This section essentially para-
phrases the results derived in Appendix A of Weisskopf et al.
(2007), modified only to accommodate the different variables
and terms that we use throughout the paper. These are defined
in Table 1.

2.1. An Isolated Source

We consider first the simple case of a single, isolated source,
for which suitable source and background apertures can be
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Figure 1. Source (solid ellipse) and background apertures (dashed ellipses) for
an isolated X-ray source, from data obtained from Release 1.1 of the Chandra
Source Catalog (Evans et al. 2010). The background aperture has been modified
slightly to illustrate the use of a detached aperture. For this source, C = 12,
Ωs = 67.74 pixel2, f = 0.93, B = 33, Ωb = 1537.41 pixel2, and g = 0.03.

Table 1
Symbols and Definitions

Symbol Definition

x, y Image pixel coordinates
Xi, Yi True source position for source i on the image
psf(Xi, Yi , x, y) dx dy Telescope PSF, i.e., the probability that a photon

from a source at location Xi, Yi will be detected
within area dx dy at location x, y

Rsi Source aperture for source i
Rb Compound background aperture, common

to all sources
Ωsi Area of source aperture for source i (e.g., pixel2)
Ωb Area of background aperture
Ci Total counts in source aperture i
B Total counts in background aperture
si Net source counts for source i
b Background density (e.g., counts-pixel−2)
fij Fraction of PSF for source j enclosed in source

aperture Rsi , e.g.,
∫
Rsi

psf(Xj , Yj , x, y) dx dy

gi Fraction of PSF for source i enclosed in Rb, e.g.,∫
Rb

psf(Xi, Yi , x, y) dx dy

Pois(n|μ) Probability of obtaining n counts from a Poisson
distribution with mean μ,
Pois(n|μ) = μne−μ/n! = μne−μ/Γ(n + 1)

μsi Expected total counts in source aperture i
μsi = ∑n

j=1 fij sj + Ωsi b

μb Expected total counts in background aperture
μb = ∑n

i=1 gisi + Ωbb

constructed without encountering other contaminating sources.
The situation is shown in Figure 1. For clarity, we omit the
source subscript i. Although apertures may be of arbitrary
shape, subject to the limitation that

∫
R

psf(X, Y, x, y) dx dy
exist, we use apertures bounded by ellipses since they roughly
approximate the general shape of PSFs for typical X-ray
telescopes.

The ability to construct a suitable background aperture
depends on a balance of competing factors. In X-ray images
with very low background densities, it may be necessary to
require Ωb � Ωs in order to obtain an accurate measure of the
background. One may also wish to separate or detach the source
and background apertures, as we show in Figure 1, to minimize
the source contribution to the background aperture. However,
spatial variations in the background and a high source density
may force a smaller background aperture situated close to the
source, in order to approximate the background with a constant
value and to treat the source as isolated.

Assuming that appropriate apertures can be defined, the
observed counts C in the source aperture and B in the background
aperture may be treated as samples from Poisson distributions
with means μs = f s + Ωsb and μb = gs + Ωbb, where f
and g are PSF fractions in source and background apertures
with areas Ωs and Ωb, and s and b are true source counts and
background density, respectively.1 Since C and B are statistically
independent, the total probability of obtaining C counts in source
aperture Rs and B counts in background aperture Rb is given by

P (C,B | μs, μb) = Pois(C | μs) Pois(B | μb)

= μC
s

Γ(C + 1)
e−μs

μB
b

Γ(B + 1)
e−μb . (1)

Defining the log-likelihood function L as

L = ln[P (C,B | μs, μb)] = C ln(μs) − μs + B ln(μb) − μb

− ln[Γ(C + 1)] − ln[Γ(B + 1)], (2)

we obtain maximum-likelihood estimators for s and b by
requiring (∂L/∂s) = 0 and (∂L/∂b) = 0. Both conditions
are satisfied by the solution to the two simultaneous linear
equations:

C = μs = f s + Ωsb,
B = μb = gs + Ωbb.

(3)

The maximum-likelihood estimators for s and b (see Weisskopf
et al. 2007, Equations (A12) and (A13)) are thus

ŝ = CΩb − BΩs

f Ωb − gΩs

,

b̂ = Bf − Cg

f Ωb − gΩs

. (4)

When C and B are large, so that we can assume a Gaussian
statistical model, we can estimate the error in ŝ and b̂ using
simple propagation of errors:

σ 2
ŝ = CΩ2

b + BΩ2
s

(f Ωb − gΩs)2
,

σ 2
b̂

= Bf 2 + Cg2

(f Ωb − gΩs)2
. (5)

2.2. Multiple Sources

Next, we consider the case in which there are two or
more sources that contribute to the counts in the source and
background apertures. The situation is illustrated in Figure 2.

1 We assume, for simplicity, that the exposures Es and Eb in the source and
background apertures are the same. This assumption may be lifted by defining
s and b as source rate and background rate per unit area, and replacing s and b
by the quantities s × Es and b × Eb . They can be similarly generalized for
source and background fluxes for given effective areas εs and εb .
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Figure 2. Source (solid ellipses) and background (dashed ellipse) apertures
for four sources in a crowded region of Chandra OBSID 1575, from data
obtained from Release 1.1 of the CSC (Evans et al. 2010). Source aperture
labels correspond to the Region IDs described in Table 2. Data within the
source apertures are excluded from the background aperture.

If the source apertures overlap, as is the case for two of the
sources here, events in the overlap region should be attributed
to only one of the overlapping source apertures to preserve the
statistical independence of the aperture counts.2 Then, for n
sources, the log-likelihood function L is a simple extension to
Equation (2):

L =
n∑

i=1

{Ci ln(μsi
) − μsi

− ln[Γ(Ci + 1)]}

+ B ln(μb) − μb − ln[Γ(B + 1)], (6)

and the maximum-likelihood estimators for si and b are obtained
by requiring that (∂L/∂si) = 0 and (∂L/∂b) = 0. These
conditions are satisfied by the solution to the set of n + 1
simultaneous linear equations (see Kashyap et al. 1994):

Ci = μsi
=

n∑
j=1

fij sj + Ωsi
b,

B = μb =
n∑

i=1

gisi + Ωbb. (7)

Equation (7) can be written in matrix form as C = F ×S, where
vectors C and S are given by

C = (C1, . . . , Cn, B),

S = (s1, . . . , sn, b),

2 An alternative approach for dealing with overlapping apertures is suggested
by Broos et al. (2010) for the ACIS Extract software package. In that package,
the aperture of the brighter source remains unchanged, while that of the fainter
source is repeatedly reduced in size to include ever-decreasing encircled
energy fractions, until the overlap is eliminated. We discuss this approach
further in Section 4.2.2.

and the matrix F is given by

F =

⎡
⎢⎢⎣

f11 · · · f1n Ωs1

...
. . .

...
...

fn1 · · · fnn Ωsn

g1 · · · gn Ωb

⎤
⎥⎥⎦.

The solution is then S = F−1 × C, where F−1 is the inverse of
F , or

ŝk =
n∑

j=1

F−1
kj Cj + F−1

k,n+1B,

b̂ =
n∑

j=1

F−1
n+1,jCj + F−1

n+1,n+1B, (8)

and the uncertainties are given by

σ 2
ŝk

=
n∑

j=1

(
F−1

kj

)2
Cj +

(
F−1

k,n+1

)2
B,

σ 2
b̂

=
n∑

j=1

(
F−1

n+1,j

)2
Cj +

(
F−1

n+1,n+1

)2
B. (9)

3. BAYESIAN FORMALISM

We now consider the problem from a Bayesian perspective.
Our goal is to derive relations for the posterior probability
distributions for background and source intensities which can
be used to determine intensities and credible regions analogous
to the quantities described in Equations (4), (5), (8), and (9).

3.1. An Isolated Source

We again consider the situation shown in Figure 1. We still
assume that the counts in the source and background apertures
are drawn from independent Poisson processes, but now use
Bayes’ theorem to express the posterior probability distributions
for μs and μb, the total intensities due to both source and
background in the respective apertures:

P (μs, μb | C,B) = P (μs, μb) P (C,B | μs, μb)

P (C,B)

= P (μs)P (μb)

P (C,B)

μC
s

Γ(C + 1)
e−μs

μB
b

Γ(B + 1)
e−μb ,

(10)

where we have used the Poisson likelihoods from Equation (1)
and have taken advantage of the statistical independence of
C,B, and μs, μb. For the prior probabilities for μs and μb, we
use γ distributions of the form

P (μs) = βαs
s μαs−1

s e−βsμs

Γ(αs)
,

P (μb) = β
αb

b μ
αb−1
b e−βbμb

Γ(αb)
. (11)

These distributions are referred to as conjugate priors for
Poisson likelihood functions, since they result in posterior
distributions of the same functional form (Raiffa & Schlaifer
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1961). They are highly flexible functions that can be used to
specify the Poisson intensity a priori. The number of counts is
specified as α − 1, and the relative areas and exposure times are
specified via β. In the limit in which αs, αb → 1 and βs, βb → 0,
these approach non-informative, flat priors.

The joint posterior probability distribution is then

P (μs, μb | C,B) = μC+αs−1
s e−μs (1+βs )μ

B+αb−1
b e−μb(1+βb)

× 1

P (C, B)

βαs
s β

αb

b

Γ(αs)Γ(C + 1)Γ(αb)Γ(B + 1)
.

(12)

The evidence term P(C, B) is determined by the standard
normalization requirement

∫ ∞

0
dμs

∫ ∞

0
dμbP (μs, μb | C,B) = 1, (13)

and the posterior distribution P (s) is determined by changing
variables from μs, μb to s, b and then marginalizing over all
values of b:

P (s |C,B) =
∫ ∞

0
db P (s, b | C,B). (14)

The mathematical details are provided in Appendix A. The final
result is

P (s | C,B) = (Ωbf − Ωsg) × (1 + βs)
(C+αs ) e−f s(1+βs )

× (1 + βb)(B+αb) e−gs(1+βb)

×
(C+αs−1)∑

k=0

(B+αb−1)∑
j=0

(f s)k Ω(C+αs−1−k)
s

Γ(k + 1)Γ(C + αs − k)

× (gs)j Ω(B+αb−1−j )
b

Γ(j + 1)Γ(B + αb − j )

× Γ(C + αs − k + B + αb − j − 1)

[Ωs(1 + βs) + Ωb(1 + βb)](C+αs−k+B+αb−j−1)
.

(15)

For the case of non-informative prior distributions, with αs =
αb = 1 and βs = βb = 0,

P (s | C,B) = (Ωbf − Ωsg) × e−f s × e−gs

×
C∑

k=0

B∑
j=0

(f s)k Ω(C−k)
s

Γ(k + 1)Γ(C − k + 1)

× (gs)j Ω(B−j )
b

Γ(j + 1)Γ(B − j + 1)

Γ(C − k + B − j + 1)

(Ωs + Ωb)(C−k+B−j+1)
.

(16)

We use Equation (16) to evaluate the posterior distribution
for the source shown in Figure 1. The result is shown in
Figure 3. We note that the mode of the posterior distribution
is indistinguishable from the maximum-likelihood estimate for
net source counts, as should be expected, since we assumed
non-informative or flat priors in deriving Equation (16). In
such cases, as can be seen from Equation (10), the posterior
probability distribution reduces to the product of the likelihoods.
We shall examine this topic in more detail in Section 4.

Net Counts s
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P
(s

)

0

0.02

0.04

0.06

0.08

0.1

Figure 3. Posterior probability distribution for the source shown in Figure 1,
evaluated using Equation (16). The distribution mode and 68% confidence
bounds are indicated with vertical dashed lines. The maximum-likelihood
estimate is indicated by a solid vertical line.

3.2. Multiple Sources

We now consider multiple sources from a Bayesian perspec-
tive. As before, Bayes’ theorem is used to express the joint
posterior probability distribution in terms of likelihoods and
prior probabilities. The details are provided in Appendix B. The
marginalized posterior probability distribution for source si is
given in Equation (B4) as

P (si | C1 . . . Cn, B) dsi = K ′
∫

· · ·
∫

b,sj �=si

db P (μb) Pois(B | μb)

×
n∏

i=1

dsiP (μsi
) Pois(Ci | μsi

).

(17)

A similar result holds for P (b | C1 . . . Cn, B) db, where integra-
tion is now over all sources, but not background.

We again assume γ distributions for priors, so that, e.g.,

P (μsi
) = β

αi

i μαi−1
si

e−βiμsi

Γ(αi)
. (18)

Since binomial expansions of powers containing αi are no longer
used in evaluating marginalizing integrals (as in Appendix A,
Equation (A6)), the restriction that αi and αb be integers is lifted.

The multiplicative constants in the prior distributions can be
absorbed into the single normalization constant K ′, yielding

P (si | C1 . . . Cn, B) dsi = K ′
∫

· · ·
∫

b,sj �=si

db μ
αb−1
b e−βbμb Pois(B | μb)

×
n∏

i=1

dsiμ
αi−1
si

e−βiμsi Pois(Ci | μsi
).

(19)

4



The Astrophysical Journal, 796:24 (14pp), 2014 November 20 Primini & Kashyap

Table 2
Aperture Data for CSC Sources in Figure 2

CSC Source CXO Region ID PSF Contribution from Source Area (pixel2) Counts

J004248.4+412521 J004255.3+412556 J004251.7+412633 J004253.6+412550

J004248.4+412521 r0115 0.98 0.00 0.00020 0.00058 2912.72 2395

J004255.3+412556 r0116 0.00 0.88 0.00078 0.0014 3551.00 759

J004251.7+412633 r0123 0.00 0.00039 0.96 0.00097 3120.61 90

J004253.6+412550 r0150 0.00019 0.098 0.00059 0.97 3959.92 273

. . . Background 0.0072 0.013 0.029 0.013 131014.00 1043

As seen in Figure 3, the posterior distributions are expected
to be localized near the distribution mode, and to vary smoothly.
In such cases, it may be possible to evaluate the integrand
in Equation (19) on a suitable (n + 1)-dimensional grid and
evaluate the n-dimensional marginalization integral by repeated
one-dimensional numerical integrations. On our Web page,3 we
present a sample Python program for doing just that, using the
maximum-likelihood estimates of source counts and errors to
define the parameters of the mesh. In the next section, we use
our code to explore a number of test cases.

4. VERIFICATION AND SIMULATIONS

4.1. Exemplar Test Cases

In this section, we apply the procedure discussed at the end of
the last section to two test cases, using data from real Chandra
observations.

4.1.1. An Isolated Point Source

We begin with the simple case shown in Figure 1. As
described at the end of Section 3.1, we computed P (s | C,B)
analytically for the aperture data given in the caption to
Figure 1, using Equation (16), as implemented in the CIAO
tool aprates. We now use our new sample code to compute
P (s | C,B) numerically from Equation (19). In both cases, we
assumed non-informative γ distribution priors with α = 1 and
β = 0. We compare the posterior distributions in Figure 4.
The distributions are in excellent agreement, demonstrating that
our numerical integration procedure and sample code produce
results consistent with the analytical result in the simple case
where both are applicable.

4.1.2. Sources in a Crowded Region

We next consider the four Chandra Source Catalog (CSC)
sources shown in Figure 2. All sources are treated at once,
although only two have overlapping apertures. However, one
of the remaining sources, r0115, is sufficiently bright that it
may influence the background data even if its source aperture is
excluded from the background. Source and background data for
this case are listed in Table 2. For the sources with overlapping
source apertures, we have attributed counts and area in the
overlap region to the fainter of the two sources, r0150.

Non-informative priors. We first assume non-informative4γ
distribution priors for all sources and background, with αi =
3 hea-www.harvard.edu/XAP
4 Strictly speaking, there are no truly non-informative priors. Our choice of
αi = 1 and βi = 0 results in a flat, improper function in linear space. In some
cases, a flat function in log space may be desired, or a formal least-information
prior derived using the Fischer information matrix. The choice of the putative
non-informative prior has significant consequences for coverage rates (i.e., the
frequency with which confidence bounds enclose true values) at low counts
(see Park et al. 2006; see also Figures 8 and 10).

Net Counts s
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Figure 4. Comparison of posterior distributions computed from Equations (16)
(solid black line) and (19) (red circles) for the example shown in Figure 1.

(A color version of this figure is available in the online journal.)

1 and βi = 0, so that we can compare our results with
those of Release 1.1 of the CSC (Evans et al. 2010). Our
procedure yields the posterior distributions shown in Figure 5.
To estimate confidence bounds, we approximate the mode of
each distribution as the vertex of a quadratic function fit to the
three highest points in the distribution. We then numerically
integrate the sample posterior distribution above and below the
mode until the 68% confidence bounds are obtained. For the two
isolated sources, r0115 and r0123, the modes and confidence
bounds, (black dashed vertical lines), are in good agreement
with those from Release 1.1 of the CSC (red dashed vertical
lines), in which all sources were treated independently. Results
for the overlapping sources r0116 and r0150 differ, as expected,
since data in the overlap area were excluded from the analysis
in Release 1.1. At present, we only note that different results
are obtained. In Section 4.2, we present results of simulations
that demonstrate that the new procedure produces more accurate
results than that used in Release 1.1.

Informative priors. We examine the effect of using infor-
mative priors by dividing the time interval of the original
data set into two halves, and using the posterior distribu-
tions from one half (computed assuming non-informative
priors) to estimate the prior distributions for the second. To
do this, we note that from the definition of γ distribution priors
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Figure 5. Posterior distributions for the four sources in Figure 2. Modes and 68% confidence bounds are indicated by black vertical dashed lines. Results from Release
1.1 of the CSC are shown in red.

(A color version of this figure is available in the online journal.)

in Equation (11)

α = [E(μ)]2

Var(μ)
,

β = E(μ)

Var(μ)
, (20)

where

E(μ) =
∫ ∞

0
dμμP (μ),

Var(μ) = E(μ2) − [E(μ)]2. (21)

Since the aperture quantities μsi
, μb are linear combinations of

source and background intensities, as given in Equation (7) and
Table 1, we may write

E(μsi
) =

n∑
j=1

fijE(sj ) + Ωsi
E(b),

Var(μsi
) =

n∑
j=1

f 2
ij Var(sj ) + Ω2

si
Var(b), (22)

and similarly for E(μb) and Var(μb).
We thus compute E(si), Var(si), E(b), and Var(b) from

Equation (21), using the marginalized posterior distributions
P (si | C1 . . . Cn, B) and P (b | C1 . . . Cn, B) from the first half of
the data set as the probability distributions, and use these to com-
pute E(μsi

), Var(μsi
), E(μb), and Var(μb) from Equation (22).

These quantities are then used to compute αsi
, βsi

, αb, and βb

from Equation (20) to define the prior distributions for analysis
of the second half of the data set.

Our results are shown in Figure 6. We note that for all
four sources the posterior distributions for the second half of
the data set based on informative priors are narrower than
the equivalent distributions based on non-informative priors,
with modes consistent with the distributions derived from the
full data set, based on non-informative priors. Note that by
adopting informative priors based on an analysis of the first
half for the second half of the observation, we make an implicit
assumption that the sources do not exhibit intrinsic variability;
this assumption appears to be invalid for at least one of the
sources, r0116.

Although it is tempting to err on the side of caution and
include all sources that may contribute to data in the background
aperture, there is a practical limit to the number of sources one
can treat at once in the simple numerical integration scheme
that we use. The mesh size grows geometrically with the
number of sources, and must include an adequate number of
points in any one dimension to allow accurate determination
of the mode and confidence bounds. With a mesh size of
∼20–30 per source, current experience indicates that fewer than
five sources can be analyzed simultaneously without exceeding
typical memory resources. For example, analysis of five sources
(a six-dimensional mesh including background) with a mesh size
of 30 per source would require ∼5 GB to hold the joint posterior
distribution in memory. In such cases, more sophisticated
algorithms, such as Markov Chain Monte Carlo techniques,
may be required to evaluate Equation (19). Alternatively, one
may be able to ignore sources in the joint computation based on
their relative contributions. For example, a source j for which
gj � 0.05 and fij � 0.05 for all other sources i can likely
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Figure 6. Posterior distributions for the four sources in Figure 2, computed using informative priors. The red and blue curves are for the first and second halves of the
data set, computed using non-informative priors, and the black curves are the posterior distributions for the second half, using informative priors derived from the red
curves. Vertical dashed lines indicate the mode and 68% confidence bounds computed from the entire data set, using non-informative priors (see Figure 5).

(A color version of this figure is available in the online journal.)

be ignored since that is typically the limit to which the PSF
is known.

4.2. Limits of Applicability

Finally, we investigate in more detail the performance of
our procedure using simulations. Our aim is to provide some
comparison with other techniques, and to explore the ranges in
relative source intensity and source separation for overlapping
sources, for which our procedure yields reliable results.

4.2.1. Simulation Set-up

We build a systematic grid for simulations based on source
separation, relative source intensity, and background level
(D. Jones 2013, private communication). We used the CIAO
tool ChaRT (Carter et al. 2003), Chandra raytracing software
SAOTrace (Jerius et al. 2004), and CIAO tools psf_project_ray
and dmcopy (Fruscione et al. 2006) to generate an ACIS im-
age of the PSF for a source at an off-axis angle of ∼0.′5 and
pixel resolution of ∼0.′′25, using the metadata of Chandra ob-
servation 1575. We then used the two-dimensional modeling
capabilities of Sherpa (Freeman et al. 2001) to simulate pairs
of sources separated by Δ = 0.5, 1.0, 1.5, 2.0 × r90, where r90
is the average radius of an ellipse enclosing 90% of the encir-
cled energy of the PSF images, determined using the CIAO tool
dmellipse. At the image locations chosen, r90 ∼ 1′′. At each sep-
aration, we considered a range of source intensities, with a bright
source (source 1) with model counts M1 = 1000 and a fainter
source (source 2) with model counts M2 = 1000/r . The rela-
tive intensity r was chosen such that log10(r) = 0, 0.5, 1, 1.5, 2,
corresponding to M2 values of 1000, 316, 100, 31.6, and 10,
respectively. Finally, we considered three different background

levels, with model background in the 90% encircled energy
source aperture for source 2 set to b × 900/r , with b =
0.001, 0.010, 0.100. For each combination of Δ, r, and b, we
used Sherpa to simulate 1000 images with appropriate statistics
applied for background and both source intensities. Examples
for r = 1 and b = 0.001 are shown in Figure 7.

4.2.2. Results for New Procedure

We analyzed each image with our sample code, assuming non-
informative priors for each source. We used the 90% encircled
energy ellipses determined from dmellipse to define the source
apertures, and a circular region centered between the two sources
with 25 times the area of a single source aperture to define
the background aperture. Such background aperture sizes were
typical of isolated point sources in Release 1.1 of the CSC.
For each combination of Δ, r, and b, and for each simulation
k, we tabulated the modes, Sk

i , and 68% confidence bounds,
S

k,−
i , S

k,+
i , from the posterior probability distributions for each

source i in the image, and computed the average fractional error
and fractional width, given by

fractional errori = 1

1000
×

1000∑
k=1

(
Sk

i − Mi

)/
Mi,

fractional widthi = 1

1000
×

1000∑
k=1

(
S

k,+
i − S

k,−
i

)/
Mi, (23)

where Mi refers to M1 and M2 for sources 1 and 2, respectively.
For Δ � 1.5 r90 , there is substantial overlap in the source

apertures, and we consider separately cases where overlap
area Ωo is assigned to the aperture of source 1 (Case 1) and
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Figure 7. Simulated Chandra images of two point sources separated by Δ = 0.5, 1.0, 1.5, 2.0 × r90 at an off-axis angle of ∼0.′5. Each source has a true intensity
of 1000 counts, and the mean background in the source aperture is ∼1 count. Source apertures are constructed to enclose approximately 90% of the PSF, and the
background aperture (dashed circle with source apertures excluded) has an area 25 times greater than that of a single source aperture and is centered at a position
halfway between the sources.

source 2 (Case 2). To be specific, in Case 1 (for example), the
aperture for source 1 is the full 90% encircled energy aperture
with area Ωs1 , which includes area Ωo. All counts that fall within
Ωs1 are assigned to the aperture for source 1. Moreover, the
aperture for source 2 is reduced in area to be Ωs2 − Ωo, and
only counts that fall within this reduced area are assigned to
the aperture for source 2. Case 2 is defined similarly. Fractional
errors for both cases are shown in Figure 8. We display the
results as sets of density plots and contour of fractional error as
a function of Δ and log10 r for fixed values of b, using radial
basis linear interpolation on a 4 × 5 Δ − log10 r mesh to provide
smooth images and contours. Since the fractional errors, as
defined in Equation (23), could be negative, we add a positive
offset of 0.1 to all interpolated values to allow for a logarithmic
scaling in the density plots. Contour values are corrected for the
offset. Color bars and contours are the same for all plots. To
provide a basis for comparison, we note that the intensity of an
isolated point source with negligible background has a statistical
uncertainty of ∼3% for a 1000 count source and ∼10% for a
100 count source.

As expected, fractional errors for source 1 are small over
most of the range of Δ and log10 r , exceeding +5% only for
Δ � 0.75 r90 and log10 r � 1 (source 2 counts �100). Fractional
errors for the fainter source 2 are larger, and exceed ∼+50% for

sources fainter than ∼100 counts or closer than ∼r90 to source 1.
It is interesting to note that Case 1 yields better results for
source 2 than Case 2 does. For example, in Case 2 the fractional
errors are in general larger in the region Δ � 1.0 r90 and
log10 r � 1.5 than in Case 1, and the area in the density plots
with fractional errors greater than ∼+5% is larger in Case 2 than
in Case 1. We attribute this somewhat counter-intuitive effect to
the fact that the source 1 intensity, and hence its contribution to
other aperture is more accurately determined when overlap area
(and hence all counts) is assigned to its aperture.

Finally, in Figure 9, we show results for fractional widths
of the posterior probability distributions, displayed in a fashion
similar to that used for fractional errors, except that since the
widths are positive-definite quantities, no offset is added in
displaying the density plots. For comparison, the ±1σ width for
a 1000 count isolated point source with negligible background
is ∼6%. We note again that better results for the fainter source 2
are achieved for Case 1. For example, the fractional widths are
in general smaller in the region Δ � 1.0 r90 and log10 r � 1.5
than in Case 2, and the area in the density plots with fractional
widths greater than ∼+50% is larger in Case 2 than in Case 1.

We emphasize that in our approach to resolving overlapping
apertures, we do not assign counts to particular sources, but
rather to particular apertures which have been modified to

8
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(a) (b)

Figure 8. Average fractional error in source intensity as a function of log10 r and Δ for relative background b of 0.001, 0.01, and 0.100, from top to bottom. Contours for
fractional errors of −0.05, 0.05, 0.1, 0.5, and 5.0 are indicated. Sampled values are indicated by crosses and the interpolated surface is displayed using a logarithmic
color map. (a) Case 1: overlap area in source apertures is assigned to the aperture for source 1. (b) Case 2: overlap area is assigned to the aperture for source 2.

(A color version of this figure is available in the online journal.)

(a) (b)

Figure 9. Average fractional width of source intensity probability distributions (see Figure 8 for plot details). (a) Case 1: overlap area in source apertures is assigned
to the aperture for source 1. (b) Case 2: overlap area is assigned to the aperture for source 2.

(A color version of this figure is available in the online journal.)
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(a) (b)

Figure 10. Average fractional errors, as in Figure 8 based on maximum-likelihood determinations for source intensities and errors (see Figure 8 for plot details).
(a) Case 1: overlap area in source apertures is assigned to the aperture for source 1. (b) Case 2: overlap area is assigned to the aperture for source 2.

(A color version of this figure is available in the online journal.)

eliminate the overlap. Estimated counts in all apertures, as
indicated in Equation (7) and Table 1, are modeled as a
linear combination of background and all source intensities,
with proportionality constants determined by PSF contributions
for sources and aperture area for background. Although it is
possible to treat the overlap area as an additional aperture,
this significantly complicates the mathematical treatment of the
problem, and we do not consider it here.5 We note that the major
differences between Case 1 and Case 2, as indicated in Figure 8,
occur for Δ � 1. As a point of reference, in Release 1 of the
CSC (Evans et al. 2010), these close pairs amounted to fewer
than ∼1% of the total number of sources on average, although
the fraction could be significantly larger in dense stellar clusters
and nuclei of galaxies.

The approach of Broos et al. (2010) is similar to our Case 1,
in that the aperture of the brighter source remains unchanged,
while that of the fainter source is reduced. However, differences
in the details of the reduced apertures may lead to somewhat
different results.

4.2.3. Comparison with Maximum-likelihood Results

We also computed the maximum-likelihood values for source
intensity and uncertainty for both sources in each simulated
image, using Equations (8) and (9). We then computed average
fractional errors and widths as in Equation (23), substituting
ŝk for Sk and 2 × σŝk

for (Sk,+ − Sk,−). Cases 1 and 2 were
defined as before. Our results are shown in Figures 10 and 11,

5 Since the number of source apertures is then no longer the same as the
number of sources, the system of linear equations described in Equation (7) is
over-determined, with no unique solution for maximum-likelihood estimators
for si and b. Further, the Jacobian determinant used to change variables in
Equation (B2) is undefined since the Jacobian matrix is no longer square.

which may be compared to Figures 8 and 9, respectively. The
fractional errors for source 1 and the fractional widths for both
sources are, in fact, comparable to those determined using our
procedure, for both Case 1 and Case 2. This might be expected,
since we used non-informative priors in our current analysis,
and, as noted at the end of Section 3.1, in such cases the
Bayesian formalism reduces to the maximum-likelihood one.
However, for the fainter source 2, the maximum-likelihood
average fractional errors are, in fact, much lower than those
computed using our procedure in the region Δ � 1.5 r90 and
log10 r � 1.0 (source 2 counts < 100). We attribute this to the
fact that, although we use “non-informative” γ distribution
priors with α = 1 and β = 0, we do take advantage of
some prior information in our procedure, namely, the implicit
assumption that all source intensities are non-negative. For
bright sources, this prior information is of little significance,
but for faint sources with few counts near brighter sources, it
could be. In contrast, maximum-likelihood estimators for source
intensity do allow negative values, since they provide the most
probable intensities for a particular data set. For faint sources,
positive statistical fluctuations in background, combined with
negative statistical fluctuations in source counts, could lead
to negative source intensities in the absence of any prior
constraints. Indeed, in the region Δ � 1.5 r90 and log10 r � 1.0,
approximately half of the maximum-likelihood solutions for
source 2 intensity are negative. For those cases, the modes of
the posterior distributions determined from our procedure are 0.
Since the fractional errors defined in Equation (23) are signed
quantities, the averages for the maximum-likelihood solutions
will be less than those from our procedure. A similar effect was
noted by Park et al. (2006), who find improved results when
using a γ distribution prior that is flat in log space.
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(a) (b)

Figure 11. Average fractional width of source intensity probability distributions, based on maximum-likelihood determinations for source intensities and errors (see
Figure 8 for plot details). (a) Case 1: overlap area in source apertures is assigned to the aperture for source 1. (b) Case 2: overlap area is assigned to the aperture for
source 2.

(A color version of this figure is available in the online journal.)

4.2.4. Comparison with Chandra Source Catalog
Release 1.1 Photometry

Finally, we compare the results from our procedure with those
expected from the analysis procedure used in Release 1.1 of
the CSC (Evans et al. 2010). In that procedure, all sources
are analyzed individually, and nearby contaminating sources
are accounted for by excluding their entire source aperture
from the background aperture and the aperture of the source
being analyzed. We can mimic that process in our procedure by
considering source 1 and source 2 separately, with appropriately
chosen apertures, namely, Ωs1 − Ωo (the Case 2 aperture for
source 1) when analyzing source 1 and Ωs2 − Ωo (the Case 1
aperture for source 2) when analyzing source 2. The results are
shown in Figure 12. Here, the results for source 1 in Figure 12(a)
should be compared to those for source 1 in Figure 8(b) and
the results for source 2 in Figure 12(a) should be compared
with those for source 2 in Figure 8(a). The corresponding
comparisons for fractional width are source 1 in Figures 12(b)
and 9(b), and source 2 in Figures 12(b) and 9(a). In all cases,
the fractional widths are comparable in the two procedures, but
fractional errors are smaller for both sources using our current
procedure.

5. SUMMARY

We present a general Bayesian formalism for computing
posterior distributions of source intensity in crowded fields.
Distributions of intensities of multiple sources are determined
simultaneously through appropriate marginalization integrals
of the joint posterior probability distribution. The procedure
depends on the individual source PSFs only through their

integral properties, and hence is likely to be more robust
than methods that depend on detailed PSF fitting. We present
examples from real data and simulations to illustrate the per-
formance of the procedure and demonstrate that it duplicates
the performance of the current CIAO aprates tool used in
Release 1.1 of the CSC for isolated sources. When source aper-
tures overlap, the standard calculation differs significantly from
the posterior distributions calculated by the new procedure. We
carry out simulations to demonstrate the advantages of the new
procedure.

When non-informative priors that are flat in linear space are
used, our procedure yields results comparable to a maximum-
likelihood analysis for brighter sources, although the latter
method yields better results for fainter sources. Improved results
may be obtained for our procedure through the use of non-
informative priors that are flat in log space.

When informative priors are used, our procedure can produce
more accurate results. This may be particularly useful in
combining data from multiple observations, such as a mosaic,
in which the apertures and PSFs for the same source may differ
significantly in the various observations. In such cases, in the
absence of variability, source intensity, and uncertainty from
one observation may be used to define the prior distribution for
a subsequent observation.

In order to preserve statistical independence for all source
apertures (so that Equation (17) holds), the procedure requires
that areas in which two apertures overlap, and the counts
contained in the overlap area, be assigned to only one aperture.
Depending on the number of sources involved, there may be
many ways of assigning overlap area. Results of our current
simulations indicate that assigning the overlap to the aperture of
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(a) (b)

Figure 12. Average fractional errors and widths of source intensity probability distributions, assuming source apertures used in Release 1.1 of the Chandra Source
Catalog. (a) Average fractional errors. (b) Average fractional widths.

(A color version of this figure is available in the online journal.)

the brighter source is preferable, although this should be verified
with simulations of more complicated cases.

Finally, one must consider how many sources can be con-
sidered simultaneously. As shown in the example in Figure 2,
multiple sources may be considered even when their source
apertures do not overlap. However, practical considerations
may limit this number. A simple numerical integration scheme,
as we describe in Section 4, is suitable when the number of
sources is few, but may severely tax computer memory resources
when the number is large. For such cases, more sophisticated
schemes, such as Markov Chain Monte Carlo techniques, may
be required.
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tics Collaboration, especially Alanna Connors, David van Dyk,
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Smithsonian Astrophysical Observatory for and on behalf of
the National Aeronautics Space Administration under contract
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grant AR0-11001X.

APPENDIX A

DERIVATION OF POSTERIOR PROBABILITY
DISTRIBUTION FOR AN ISOLATED SOURCE

We determine the evidence term P (C,B) by requir-
ing

∫ ∞
0 dμs

∫ ∞
0 dμbP (μs, μb| C,B) = 1. Since Γ(A) =

BA
∫ ∞

0 dx xA−1e−Bx, we find

P (C,B)

= Γ(C + αs)βαs
s Γ(B + αb)βαb

b

Γ(αs)Γ(C + 1)(1 + βs)(C+αs )Γ(αb)Γ(B + 1)(1 + βb)(B+αb)
,

(A1)

and

P (μs, μb| C,B) = (1 + βs)(C+αs )μC+αs−1
s e−μs (1+βs )

Γ(C + αs)

× (1 + βb)(B+αb)μ
B+αb−1
b e−μb(1+βb)

Γ(B + αb)
.

(A2)

In order to obtain the posterior probability distribution for
source intensity s, marginalized over all values of background
intensity b, we integrate the joint posterior distribution over all
values of b, changing variables from (μs, μb) to (s, b):
∫

all b
dμsdμbP (μs, μb | C,B)

=
∫ ∞

b=0

∂(μs, μb)

∂(s, b)
ds db P (μs(s, b), μb(s, b) | C,B),

= P (s | C,B) ds, (A3)

where the Jacobian determinant is

∂(μs, μb)

∂(s, b)
= ∂μs

∂s

∂μb

∂b
− ∂μb

∂s

∂μs

∂b

= Ωbf − Ωsg. (A4)
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Thus, we have

P (s | C,B) ds = ds (Ωbf − Ωsg)
(1 + βs)(C+αs )

Γ(C + αs)
e−f s(1+βs )

× (1 + βb)(B+αb)

Γ(B + αb)
e−gs(1+βb)

×
∫ ∞

0
db (f s + Ωsb)C+αs−1e−Ωsb(1+βs )

× (gs + Ωbb)B+αb−1e−Ωbb(1+βb)

= ds (Ωbf − Ωsg)
(1 + βs)(C+αs )e−f s(1+βs )

Γ(C + αs)

× (1 + βb)(B+αb)e−gs(1+βb)

Γ(B + αb)

×
∫ ∞

0
db (f s + Ωsb)C+αs−1

× (gs + Ωbb)B+αb−1e−b[Ωs (1+βs )+Ωb(1+βb)].

(A5)

If we limit our choices for αs and αb to be integers, we can use
the binomial theorem to write

(f s + Ωsb)C+αs−1 =
C+αs−1∑

k=0

(
C + αs − 1

k

)
(f s)k

× (Ωsb)C+αs−1−k

=
C+αs−1∑

k=0

Γ(C + αs)

Γ(k + 1)Γ(C + αs − k)

× (f s)k (Ωsb)C+αs−1−k, (A6)

and a similar expression for (gs + Ωbb)B+αb−1. Equation (A5)
can then be written

P (s | C,B) ds = ds (Ωbf − Ωsg)

× (1 + βs)
(C+αs ) e−f s(1+βs )

× (1 + βb)(B+αb) e−gs(1+βb)

×
(C+αs−1)∑

k=0

(B+αb−1)∑
j=0

(f s)k Ω(C+αs−1−k)
s

Γ(k + 1)Γ(C + αs − k)

× (gs)j Ω(B+αb−1−j )
b

Γ(j + 1)Γ(B + αb − j )

× Γ(C + αs − k + B + αb − j − 1)

[Ωs(1 + βs) + Ωb(1 + βb)](C+αs−k+B+αb−j−1)
.

(A7)

For the case of non-informative prior distributions, with αs =
αb = 1 and βs = βb = 0, we have

P (s | C,B) ds = ds (Ωbf − Ωsg) × e−f s × e−gs

×
C∑

k=0

B∑
j=0

(f s)k Ω(C−k)
s

Γ(k + 1)Γ(C − k + 1)

× (gs)j Ω(B−j )
b

Γ(j + 1)Γ(B − j + 1)

× Γ(C − k + B − j + 1)

(Ωs + Ωb)(C−k+B−j+1)
, (A8)

or

P (s | C,B) ds = ds (Ωbf − Ωsg)

×
C∑

k=0

B∑
j=0

Pois(k | f s) Ω(C−k)
s

Γ(C − k + 1)

× Pois(j | gs)Ω(B−j )
b

Γ(B − j + 1)

Γ(C−k +B −j +1)

(Ωs + Ωb)(C−k+B−j+1)
.

(A9)

APPENDIX B

POSTERIOR PROBABILITY DISTRIBUTION
FOR MULTIPLE SOURCES

Because of the additional mathematical complexity, we do not
attempt to derive an analytical expression for the joint posterior
probability distribution for n sources plus background. Rather,
we assume that the marginalization integrals will be computed
numerically, and take advantage of a change in variables to
evaluate the joint posterior probability on an (n+1)-dimensional
grid of s1 . . . sn, b, for easier marginalization.

We can extend Equation (10) to n sources as

P (μsi
. . . μsn

, μb | C1 . . . Cn, B) = K P (μb) Pois(B | μb)

×
n∏

i=1

P (μsi
) Pois(Ci | μsi

),

(B1)

where the normalization constant K includes the evidence term.
We can then write the marginalization integral for source si as

P (si | C1 . . . Cn, B) dsi = K

∫
· · ·

∫
b,sj �=si

dμb P (μb) Pois(B | μb)

×
n∏

i=1

dμsi
P (μsi

) Pois(Ci | μsi
)

= K

∫
· · ·

∫
b,sj �=si

∂(μs1 . . . μsn
, μb)

∂(s1 . . . sn, b)
db P (μb)

× Pois(B | μb)
n∏

i=1

dsiP (μsi
)

× Pois(Ci | μsi
). (B2)

We note that since μsi
and μb are linear functions of s1 . . . sn

and b (see Table 1), the (n+1)-dimensional Jacobian determinant
∂(μs1 . . . μsn

, μb)/∂(s1 . . . sn, b) is independent of s1 . . . sn and
b. For example, for the case n = 2,

∂(μs1 , μs2 , μb)

∂(s1, s2, b)
= f11(f22Ωb − g2Ωs2 ) − f12(f21Ωb − g1Ωs2 )

+ Ωs1 (f21g2 − f22g1). (B3)

It can therefore be absorbed into the normalization constant K,
and we can write

P (si | C1 . . . Cn, B) dsi = K ′
∫

· · ·
∫

b,sj �=si

db P (μb) Pois(B | μb)

×
n∏

i=1

dsiP (μsi
) Pois(Ci | μsi

).

(B4)
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