
Solar Phys (2012) 281:847–862
DOI 10.1007/s11207-012-0090-x

A Bayesian Analysis of the Correlations Among Sunspot
Cycles

Y. Yu · D.A. van Dyk · V.L. Kashyap · C.A. Young

Received: 10 November 2011 / Accepted: 25 July 2012 / Published online: 21 August 2012
© Springer Science+Business Media B.V. 2012

Abstract Sunspot numbers form a comprehensive, long-duration proxy of solar activity and
have been used numerous times to empirically investigate the properties of the solar cycle.
A number of correlations have been discovered over the 24 cycles for which observational
records are available. Here we carry out a sophisticated statistical analysis of the sunspot
record that reaffirms these correlations, and sets up an empirical predictive framework for
future cycles. An advantage of our approach is that it allows for rigorous assessment of both
the statistical significance of various cycle features and the uncertainty associated with pre-
dictions. We summarize the data into three sequential relations that estimate the amplitude,
duration, and time of rise to maximum for any cycle, given the values from the previous
cycle. We find that there is no indication of a persistence in predictive power beyond one
cycle, and we conclude that the dynamo does not retain memory beyond one cycle. Based
on sunspot records up to October 2011, we obtain, for Cycle 24, an estimated maximum
smoothed monthly sunspot number of 97 ± 15, to occur in January – February 2014 ± six
months.
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1. Introduction

Sunspot numbers constitute the longest continuous record of observations in astronomy;
they have been recorded in observatories worldwide since the Dalton Minimum (1790 –
1830), and are available as monthly estimates since 1749. Because of the multigenerational
span, both the quality of the observations and the techniques used to record them have var-
ied, and thus these data present a challenge for interpretation. The data are maintained at
the Solar Influences Data Analysis Center in Belgium (http://sidc.oma.be) as the interna-
tional sunspot numbers (SSNs), and their suitability as a proxy for solar activity has been
found to be good by comparison with other proxies (Waldmeier, 1971). Recent efforts to
recalibrate the SSN have suggested potential differences between the different proxies (see,
e.g., Svalgaard, 2010). However, we do not include these corrections in our analysis because
first, there is a possibility that a fundamental change has occurred in the manifestation of the
activity proxies in recent years, and second, there is no evidence that the calibration needs
to be changed over the entire historical record. The long duration of the dataset allows us to
analyze a much larger number of cycles than with other, more recently developed proxies of
solar activity (such as sunspot area, umbral fields, 10.7 cm flux, etc.).

Accurate prediction of solar-activity cycles is an important area of research since vari-
ations in “space weather” caused by solar activity affect radio communication, the perfor-
mance of low-Earth orbit satellites, and geomagnetic activity (e.g. aurorae). Studying the be-
havior of sunspot cycles is important not only for understanding the physics of solar activity,
but also for the planning of space missions. Sunspot numbers are valuable as an indicator of
solar activity, and identifying recurring patterns in sunspot cycles is therefore crucial from
both an empirical and a theoretical perspective. Indeed, the 11-year activity cycle of the Sun
was first discovered by noticing the same cycle in SSNs (Wolf, 1852). While correlations
with solar activity have been identified in other indicators (solar flare numbers, sunspot
areas, 10.7 cm flux, etc.; see Hudson, 2007) and studies of solar activity have been ex-
tended back many millennia using dendrochronological data (Bonev, Penev, and Sello, 2003;
Solanki et al., 2004), the SSN data are the first rung in the ladder to calibrate all observa-
tions of the solar-activity cycle. Waldmeier (1935, 1939) noted that sunspot cycles tend
to take less time to rise to maximum than to fall to minimum. Other important relations,
such as the correlation between the duration of a cycle and the amplitude of the next cycle
(amplitude–period effect), can be used to predict characteristics of the upcoming cycle years
in advance (see, e.g., Hathaway, Wilson, and Reichmann 1994, 2002; Watari, 2009). Here
we analyze the SSN data to derive statistically meaningful phenomenological correlations
between the various parameters that observationally define a solar cycle. Such correlations
act as constraints on theoretical models of dynamo action that seek to explain solar ac-
tivity (Schüssler, 2007). Analyses of long-duration activity cycles (Usoskin, Solanki, and
Kovaltsov, 2007) suggest that they are driven by a stochastic or chaotic process, and it is
therefore necessary to identify the statistical properties of the activity cycles in the current
era.

Prediction methods for upcoming cycles include those based on i) solar dynamo models
(Choudhuri, 1992; Charbonneau and Dikpati, 2000; Dikpati, de Toma, and Gilman, 2006;
Choudhuri, Chatterjee, and Jiang, 2007; Charbonneau, 2007), ii) precursors such as geo-
magnetic aa indices (Hathaway and Wilson, 2006), and iii) statistical analyses with his-
torical data (Hathaway, Wilson, and Reichmann, 1994; Benestad, 2005; Xu et al., 2008;
Gil-Alana, 2009), among others. Pesnell (2008) reviews a large range of predictions made
for the upcoming Cycle 24. Given the current debate over the amplitude of Cycle 24, for
which different physical models yield substantially different predictions (see, for example,

http://sidc.oma.be
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Dikpati and Gilman, 2006, and Choudhuri, Chatterjee, and Jiang, 2007), a statistical method
that uses only the SSN data will provide a useful benchmark for comparison. However,
methods based on statistical extrapolation rely on various assumptions just as physical mod-
els do, and may not fully account for the uncertainties involved. For example, for Cycle 23,
the smoothed maximum sunspot number as predicted by several researchers varied consid-
erably, from 80 to 210. Kane (2001) noted that among 20 predictions, only 8 were within a
reasonable range of the actual value.

We describe our analysis of SSN data in Section 2, and in particular describe the statisti-
cal model used to determine the correlations between the parameters defining a given cycle
from the previous cycle (Section 2.1) and fitting the model to the data (Section 2.2). We
report the resulting correlations and discuss their implications in Section 3, and summarize
our work in Section 4.

2. Analysis

2.1. Two-Stage Statistical Model

This article proposes a two-stage statistical model that accounts for the uncertainty both in
smoothed monthly sunspot numbers and in predicting future cycle characteristics from his-
torical data. In the first stage of the statistical model, cycle characteristics, such as amplitude,
duration, and rising time, are estimated from raw SSNs. Then, in the second stage, relations
between the characteristics of consecutive cycles are examined. This results in three sequen-
tial relations that summarize known features of sunspot cycles such as the Waldmeier effect
and the correlation between amplitudes of successive cycles. These statistical properties
place a constraint on any physical model that attempts to explain the solar-cycle behavior.

In this section we fit the two stages of the statistical model separately. This involves
first modeling the cycles in Section 2.1.1 and then modeling the relationships among the
parameters that describe the cycles in Section 2.1.2. We discuss how these two stages can
be combined into a single coherent statistical model in Section 2.2 and show the results of
this coherent fit in Section 3.

2.1.1. Stage One: Modeling the Cycles

When extracting cycle length, rising time, and amplitude information from SSN data, we
adopt an approach similar to the two-parameter curve fitting of Hathaway, Wilson, and Re-
ichmann (1994). (See also Sabarinath and Anilkumar (2008), and Volobuev (2009), who
propose other functional forms.) For cycle i, suppose t

(i)

0 is the starting time, t (i)max is the time
of the cycle maximum, t

(i)

1 is the end time, ci is the amplitude, and Ut is a parameter that
captures the “average solar activity level” at time t . We postulate that

• for the rising phase t < t(i)max

Ut = ci

(
1 −

(
t (i)max − t

t
(i)
max − t

(i)

0

)α1
)

and (1)

• for the declining phase t > t(i)max

Ut = ci

(
1 −

(
t − t (i)max

t
(i)

1 − t
(i)
max

)α2
)

, (2)
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Figure 1 Parameterized form of
a solar cycle. We illustrate U2

t
with ci = 10, α1 = 1.9, and
α2 = 1.1, where Ut is specified
by Equations (1) and (2).
Because we model with a
square-root transformation, U2

t
approximates the shape of a cycle
on the original scale of the SSN
data.

where α1, α2 > 1 are shape parameters assumed to be the same for all cycles. A curve de-
scribed by the two postulates is illustrated in Figure 1. We do not assume that the starting
point of the next cycle [t (i+1)

0 ] is identical to the end point of the current cycle [t (i)1 ]. When
t
(i+1)

0 < t
(i)

1 , the two cycles overlap, and the activity level [Ut ] during the overlapping period
is defined as the sum of the contributions of the form (2) and (1) from these two cycles. We
adopt this parameterization because it is simple, flexible, easy to interpret, and fits the data
well.

Given a total of k = 25 cycles (including the incomplete Cycles 0 and 24), we relate the
parameters α = (α1, α2) as well as T0 = (t

(i)

0 , i = 0, . . . , k−1), Tmax = (t (i)max, i = 0, . . . , k−
1), T1 = (t

(i)

1 , i = 0, . . . , k − 1), and C = (ci, i = 0, . . . , k − 1), to the observed data by a
linear model: √

Yt

∣∣ (
T0, Tmax, T1,C,α,β,σ 2

) ind∼ N
(
β + Ut, σ 2

)
, (3)

where the parameter β may be regarded as a baseline, and we model Yt , the monthly av-
erage sunspot number at time t , with a square-root transformation. This transformation is
used to stabilize the variance, since higher sunspot numbers are also associated with higher
variability. (A variance-stabilizing transformation is a mapping [f (y)] of the data [y] such
that the variability of f (y) is constant relative to its mean value. For example, for count data
that follow a Poisson(μ) distribution, the variance increases with the mean μ. However, the
variance of

√
y is approximately the same for different μ. The situation with SSNs is sim-

ilar, and a square-root transformation is suitable. Note that results such as predictions are
easily obtained on the original scale by inverting the transformation.)

Our approach differs from other curve-fitting methods (e.g. Hathaway, Wilson, and Re-
ichmann, 1994) in that we model all cycles jointly and we estimate the starting and ending
points of the cycles from the data rather than fixing them in advance. We also model the
monthly sunspot numbers directly rather than smooth them beforehand, e.g. by a moving
average, as is often done in other statistically based prediction methods. It may be interest-
ing to analyze daily data in a future work; see Noble and Wheatland (2012) for an analysis
of the daily fluctuations. However, one intrinsic difficulty with daily data is that the same
spot or spot group is counted every day until it disappears or rotates away over the limb
(aside from the issue of merging or splitting spots). We choose the monthly data partly to
alleviate this problem.

When T0 and Tmax are treated as unknown parameters, model (3) is not the usual linear
regression model that can be easily fit by ordinary least squares. To overcome such dif-
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Figure 2 Fitted values and residuals for the regression model in Equation (3) for one posterior sample. Top:
sunspot numbers with fitted values of Tmax represented as vertical lines (only the last few cycles are shown
for illustration). Bottom: histogram of residuals with approximating normal density curve.

Table 1 Fitted values (posterior
means) and standard errors
(posterior standard deviations)
for α1, α2, β , and σ 2.

α1 α2 β σ 2

1.9 ± 0.11 1.1 ± 0.04 0.47 ± 0.18 1.2 ± 0.03

ficulties, we adopt a Bayesian approach and use Markov chain Monte Carlo (MCMC) to
simulate samples from the posterior distribution. We discuss Bayesian analysis, MCMC,
and how we use them to fit our model in Section 2.2. The fitted model and residuals are
illustrated in Figure 2. These are based on a random draw from the posterior distribution
after fitting Equation (3). Plots using multiple posterior draws are qualitatively the same and
are omitted. The residuals are defined as

√
Yt − β − Ut as in Equation (3). The residual plot

reveals a reasonably good fit, given the simple functional form of Equations (1) and (2).
Note that Equation (3) alone does not specify relationships between consecutive cycles,

and is therefore not useful for predicting cycle characteristics of entirely new cycles. In
Section 2.1.2, we explore relationships between cycle characteristics, and build additional
structure on Equation (3) to enhance its usefulness in predictions.

Table 1 displays the fitted values and standard errors for some parameters that are com-
mon to all cycles. The difference between α1 and α2 suggests an asymmetry in shape be-
tween the rising and declining phases of a cycle. We have also fitted with individual (α1, α2)

for each cycle, but the results are similar and hence omitted.
Table 2 summarizes the parametric fits to each cycle. (Again, the model-fitting procedure

will be described in Section 2.2.) Note that the interval between when the old cycle ends and
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Table 2 Cycle-profile parameter posterior means for each cycle.

Cycle Amplitude
ci ∼ √

SSN
Rise [yr]
tmax − t0

Fall [yr]
t1 − tmax

Gap [yr]
t i+1
0 − t i1

Start [yr]
t0

End [yr]
t1

0 9.05+0.36
−0.34 5.00+3.33

−2.83 6.43+0.40
−0.35 −1.40+0.15

−0.18 1745.3+2.6
−3.2 1756.6+0.2

−0.2
1 8.55+0.23

−0.22 6.41+0.19
−0.32 7.23+0.44

−0.40 −2.10+0.26
−0.24 1755.2+0.2

−0.2 1768.9+0.3
−0.3

2 10.32+0.23
−0.21 3.41+0.17

−0.25 7.38+0.37
−0.31 −1.10+0.18

−0.24 1766.8+0.1
−0.1 1777.5+0.3

−0.3
3 12.25+0.25

−0.24 2.04+0.21
−0.21 7.49+0.26

−0.24 −1.07+0.16
−0.18 1776.4+0.1

−0.1 1786.0+0.2
−0.2

4 11.57+0.24
−0.22 3.07+0.26

−0.24 11.73+0.27
−0.24 −1.15+0.24

−0.18 1784.9+0.2
−0.2 1799.7+0.2

−0.2
5 6.98+0.29

−0.24 5.99+0.34
−0.32 5.59+0.42

−0.42 1.52+0.48
−0.44 1798.6+0.1

−0.1 1810.1+0.2
−0.2

6 6.20+0.25
−0.22 5.93+0.40

−0.45 5.88+0.37
−0.38 0.07+0.26

−0.32 1811.7+0.3
−0.2 1823.5+0.3

−0.2
7 8.33+0.24

−0.22 6.82+0.18
−0.23 4.73+0.36

−0.24 −0.73+0.14
−0.19 1823.5+0.1

−0.1 1835.1+0.2
−0.2

8 11.63+0.27
−0.25 2.81+0.19

−0.16 8.43+0.32
−0.35 −1.67+0.18

−0.16 1834.4+0.1
−0.1 1845.6+0.2

−0.3
9 10.48+0.23

−0.24 4.92+0.25
−0.25 8.71+0.37

−0.30 −1.00+0.25
−0.17 1843.9+0.2

−0.2 1857.6+0.3
−0.2

10 9.81+0.25
−0.21 3.76+0.24

−0.26 9.16+0.34
−0.41 −1.79+0.20

−0.21 1856.6+0.1
−0.2 1869.5+0.3

−0.2
11 11.05+0.25

−0.26 3.20+0.13
−0.20 8.07+0.26

−0.24 −0.28+0.19
−0.22 1867.7+0.1

−0.1 1879.0+0.2
−0.1

12 8.23+0.24
−0.22 4.72+0.44

−0.47 7.29+0.46
−0.54 −0.60+0.27

−0.23 1878.7+0.1
−0.1 1890.7+0.3

−0.3
13 9.15+0.23

−0.23 3.47+0.28
−0.30 8.99+0.34

−0.32 −0.65+0.23
−0.19 1890.1+0.1

−0.1 1902.6+0.2
−0.2

14 8.11+0.26
−0.25 4.98+0.27

−0.40 6.77+0.48
−0.45 −0.01+0.26

−0.24 1901.9+0.2
−0.2 1913.7+0.2

−0.3
15 9.44+0.26

−0.23 4.45+0.22
−0.28 6.27+0.39

−0.27 −0.95+0.12
−0.21 1913.7+0.1

−0.2 1924.4+0.3
−0.2

16 8.82+0.29
−0.25 4.61+0.39

−0.36 6.79+0.46
−0.38 −0.77+0.19

−0.23 1923.4+0.2
−0.2 1934.8+0.2

−0.2
17 10.70+0.24

−0.23 4.25+0.25
−0.17 7.43+0.32

−0.35 −1.27+0.18
−0.23 1934.0+0.1

−0.1 1945.7+0.2
−0.2

18 12.49+0.27
−0.28 4.02+0.23

−0.19 6.73+0.19
−0.23 −0.51+0.17

−0.08 1944.5+0.1
−0.1 1955.2+0.1

−0.1
19 14.19+0.29

−0.26 3.23+0.10
−0.15 7.81+0.19

−0.16 −1.04+0.12
−0.13 1954.7+0.1

−0.1 1965.8+0.2
−0.2

20 10.61+0.26
−0.24 4.38+0.29

−0.30 9.97+0.53
−0.47 −2.06+0.31

−0.29 1964.7+0.1
−0.1 1979.1+0.3

−0.4
21 13.04+0.25

−0.29 3.46+0.21
−0.21 7.32+0.26

−0.32 −1.01+0.09
−0.16 1977.0+0.1

−0.1 1987.8+0.2
−0.2

22 12.91+0.29
−0.24 3.42+0.18

−0.25 7.19+0.22
−0.28 −0.88+0.13

−0.12 1986.8+0.1
−0.1 1997.4+0.2

−0.1
23 10.90+0.26

−0.26 4.40+0.27
−0.23 8.31+0.36

−0.39 −0.26+0.34
−0.33 1996.5+0.2

−0.2 2009.2+0.2
−0.2

the new cycle begins is usually negative, suggesting that the new cycle begins before the old
cycle ends. This is consistent with recent results based on torsional oscillations (Hill et al.,
2010).

2.1.2. Stage Two: Modeling Relationships Between Consecutive Cycles

The goal at this stage of the statistical model is to build up an empirical mechanism that gen-
erates the amplitude, duration, and rising time of a cycle, given those of the previous cycle.
As a preliminary check, we carry out correlations between different parameters that define
the model in a given cycle as well as between adjacent cycles. The results of the correla-
tion analyses are reported in Tables 3, 4, and 5. The tables list Spearman’s rank coefficient
[ρ] (Kendall, 1975) computed using the best-fit parameter values and the corresponding p-
value. (The error bars on ρ are computed from 200 posterior samples of the parameters and
represent the robustness of the correlation. The p-value represents the probability that such
a correlation may be obtained by chance.) Within a cycle (Table 3), a clear anticorrelation
is seen between the amplitude [ci ] and the rise time [t imax − t i0], as well as between rise time
and fall time [t i1 − t imax]; i.e., strong cycles rise to maximum quickly (Hathaway, Wilson, and
Reichmann, 1994), and when they rise quickly they tend to decline slowly. Correlations also
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Table 3 Correlations within
cycle. Rise time

t imax − t i0

Fall time
t i1 − t imax

Gap
t i+1
0 − t i1

Amplitude
ci

ρ = −0.81 ± 0.06 ρ = 0.48 ± 0.07 ρ = −0.32 ± 0.06

p = 0.00 p = 0.02 p = 0.13

Rise time

t imax − t i0

ρ = −0.62 ± 0.09 ρ = 0.29 ± 0.09

p = 0.00 p = 0.18

Fall time

t i1 − t imax

ρ = −0.46 ± 0.08

p = 0.02

Table 4 Correlations with following cycle.

Amplitude+ Rise time+ Fall time+ Gap+

Amplitude ρ 0.46 ± 0.02 −0.21 ± 0.06 0.39 ± 0.05 −0.06 ± 0.07

p 0.03 0.34 0.07 0.80

Rise time ρ 0.05 ± 0.10 −0.27 ± 0.07 −0.06 ± 0.13

p 0.83 0.21 0.37

Fall time ρ 0.20 ± 0.07 0.19 ± 0.07

p 0.36 0.39

Gap ρ 0.25 ± 0.10

p 0.25

Table 5 Correlations with previous cycle.

Amplitude Rise time Fall time Gap

Amplitude− ρ 0.46 ± 0.02

p 0.03

Rise time− ρ −0.17 ± 0.08 0.05 ± 0.10

p 0.44 0.83

Fall time− ρ 0.07 ± 0.05 −0.08 ± 0.06 0.20 ± 0.07

p 0.76 0.72 0.36

Gap− ρ −0.37 ± 0.07 0.29 ± 0.07 −0.25 ± 0.09 0.25 ± 0.10

p 0.08 0.18 0.25 0.25

appear to be present between amplitude and fall time, with strong cycles correlated with
long declines (consistent with the above anticorrelations), and inversely between fall time
and cycle gap [t i+1

0 − t i1]. However, the direct correlation between the rise time and cycle
gap is not statistically significant.

We show the correlations of a parameter with the parameter values of the following cy-
cle in Table 4 and with the parameter values in the preceding cycle in Table 5. Only the
amplitude is significantly correlated across the cycles. There is weak evidence for a corre-
lation between the current cycle amplitude and the fall time of the next cycle, and inversely
between the previous cycle gap and the current amplitude. For more recent determinations
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Figure 3 Relationships between the next amplitude [ci+1] and the current amplitude [ci ], and between ci+1

and t
(i+1)
0 − t

(i)
max. Posterior means based on the first-stage model in Equation (3) are reported

of correlations across cycles, see Kane (2008), Kakad (2011), and Ramesh and Lakshmi
(2012); see also Vaquero and Trigo (2008) for a cautionary note.

We thus consider the relation between parameters in consecutive cycles so that they may
be exploited to predict sunspot numbers of an entirely new cycle. We have carried out nu-
merous checks of the parameter combinations. In Figure 3 we display two such relations
between the fitted values (posterior means) based on the first-stage model (Equation (3)):
the amplitude of the next cycle [ci+1] against the amplitude of the current cycle [ci ] (left
plot), and against the time from maximum to the start of the next cycle [t (i+1)

0 − t (i)max] (right
plot).

Based on the above exploratory analyses, we consider a combination of parameters to
define a statistical model for predicting the next-cycle parameters. First, we enhance the
predictive power of the positive correlation between successive amplitudes by combining it
with the negative correlation shown on the right plot of Figure 3:

ci+1 ∼ δ1 + γ1
ci

t
(i+1)

0 − t
(i)
max

+ N
(
0, σ 2

1

)
. (4)

Next, we observe the following form of the Waldmeier effect relating the rising time of
each cycle to its amplitude:

t (i+1)
max − t

(i+1)

0 ∼ δ2 + γ2ci+1 + N
(
0, σ 2

2

)
. (5)

This relationship is illustrated in the middle panel in Figure 4, again based on the first-stage
model in Equation (3).

Finally, we incorporate the relatively weak correlation between the amplitude and the
duration of the declining phase of each cycle:

t
(i+1)

1 − t (i+1)
max ∼ δ3 + γ3ci+1 + N

(
0, σ 2

3

)
. (6)
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Figure 4 Three linear relationships useful for prediction, based on fitting the first-stage model in Equa-
tion (3).

Figure 4 illustrates Equations (4), (5), and (6). Although the third panel of Figure 4 exhibits
a relatively weak relationship, we note that Equation (6) is not needed for predicting the
timing and amplitude of the next solar maximum, which is often the main goal.

Note that only one of these relations explicitly connects the parameters of one cycle with
that of the next (Equation (4)). The other two (Equations (5) and (6)) are based on parameter
correlations within a cycle, but are computed for the following cycle. This sequence, of
first computing the amplitude of the following cycle and using that to compute the rise and
fall times of that cycle, is an important facet of the predictive capacity of our model. The
calculations cannot be carried out in a different order.

We emphasize that, because of the large amount of raw SSN observations, the quantities

ci , t (i)max, t
(i)

1 , i = 0, . . . ,23, and t
(i)

0 , i = 1, . . . ,24, are well constrained by the first-stage
model in Equation (3). Nonetheless, their fitted values (posterior means) do not account for
the uncertainties and are used only for the purpose of illustration. The mathematical forms
of the relationships in Equations (4) – (6) are found by examining the posterior means of
these parameters, but ultimately the parameters will be fit using the raw data. In Section 2.2
we describe a two-level joint-modeling approach that automatically accounts for uncertainty
in these quantities.

We have also explored possible correlations between separated cycles (i.e. between the
kth and the (k±2)th cycles). However, given the characteristics of Cycle k − 1, we find no
evidence for a conclusive dependence of Cycle k on Cycle k±2. Such dependences are weak
and have little predictive value. Therefore, we focus on lag-one dependence.

2.2. Model Fitting

We adopt a Bayesian approach based on the relations found in the previous stage and carry
out principled parameter estimations for the correlation coefficients. We employ MCMC
methods that fit both stages of the statistical model simultaneously. This approach makes
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it easy to correctly account for the uncertainty both in estimating the parameters of the
individual cycles and in modeling the relations among cycles.

2.2.1. Bayesian Hierarchical Models

The results in Section 2.1 are obtained by fitting Equation (3) using a Bayesian approach. In
this section we describe the model-fitting procedure as well as how the Bayesian approach
can be used to fit both stages (Equations (3) and (4) – (6)) together as a single more coher-
ent statistical model. See Gelman et al. (2004) for an introduction to Bayesian hierarchical
modeling and the associated computational strategies. See van Dyk et al. (2001) for the
use of Bayesian methods in the context of highly structured models for spectral analysis in
high-energy astrophysics, and Esch et al. (2004) in the context of multiscale image recon-
struction. In a Bayesian analysis, the likelihood function [p(Y | θ)] is combined with a prior
distribution [p(θ)] to form a posterior distribution,

p(θ | Y ) ∝ p(Y | θ)p(θ),

and all inference is derived from this posterior distribution. One may build further struc-
tures on the prior by introducing some hyperparameter [η] with its own prior [p(η)] (the
hyperprior), and replacing p(θ) with p(θ | η). This leads to a two-level model. By Bayes’s
theorem, the joint distribution of (θ, η) given the data Y can be written as

p(θ, η | Y ) ∝ p(Y | θ, η)p(θ | η)p(η),

where p(Y | θ, η) is the likelihood of observed data (the first stage), p(θ | η) is the second-
stage distribution for θ , and p(η) is the hyperprior. Inference concerning θ , for example, is
based on its marginal posterior distribution p(θ | Y ) = ∫

p(θ, η | Y )dη.
In our case Y = {Yt } and θ is the collection of parameters

θ = (
T0, Tmax, T1,C,α,β,σ 2

)
.

The likelihood function p(Y | θ) is determined by Equation (3). We impose independent
uniform prior distributions on β and logσ , as is commonly done for such parameters in a
first-stage regression model. For each of α1, α2, a uniform prior on [1,3] is used to allow
for a flexible range of cycle shapes. When fitting the first-stage model (3) alone, as in Sec-
tion 2.1.1, noninformative uniform priors are assigned to the other components of θ , i.e.
T0, Tmax, T1, and C, subject to natural constraints on their ranges. In this section we fit the
two stages jointly, and these components of θ are linked together by Equations (4) – (6). In

addition, we express the starting point of the next cycle [t (i+1)

0 ], given the end point of the
current cycle [t (i)1 ], as

t
(i+1)

0 ∼ t
(i)

1 + N
(
0, τ 2

)
. (7)

The parameter τ 2 regulates how far apart t
(i+1)

0 and t
(i)

1 are allowed to be. Allowing t
(i+1)

0

to be different from t
(i)

1 offers additional flexibility. In summary, Equations (4) – (7) specify
the distribution of T0, Tmax, T1, and C given the hyperparameters η = (τ 2, γj , δj , σ

2
j , j =

1,2,3). For these hyperparameters we use independent noninformative priors (specifically,
uniform priors) on τ , γj , δj , σj , j = 1,2,3.
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2.2.2. Model Fitting with MCMC

Markov chain Monte Carlo (MCMC) techniques are used to draw samples from the pos-
terior distribution, which can then be summarized as point estimates and error bars of the
parameters of interest (see, e.g., van Dyk et al., 2001 and Park, van Dyk, and Siemiginowska,
2008). In general, if we can simulate random samples θ(1), . . . , θ (L) from p(θ | Y ), the target
posterior distribution, then inferences for quantities of interest can be derived by examining
the empirical distribution of these samples. For example, suppose θ is one dimensional and
has a symmetric and unimodal posterior distribution, then a natural point estimate of θ is the
posterior mean, which can be approximated by L−1

∑L

l=1 θ(l), the empirical average of the
posterior sample. The posterior standard deviation serves as a natural one-σ error bar, and
can be approximated by the sample standard deviation of θ(1), . . . , θ (L).

In high-dimensional situations when direct simulation from the posterior distribution
is difficult, as is the case of our analysis, one may adopt an MCMC approach, which
constructs a Markov chain with the desired posterior distribution p(θ | Y ) as its sta-
tionary distribution. After the Markov chain reaches equilibrium, the iterations of θ can
then be used as (dependent) samples from the target distribution. Two well-known meth-
ods for constructing such Markov chains are the Metropolis–Hastings (M–H) algorithm
(Metropolis et al., 1953; Hastings, 1970) and the Gibbs-sampler (Geman and Geman, 1984;
Gelfand and Smith, 1990). In an M–H strategy, to obtain the next iteration of the Markov
chain, a sample is drawn from a proposal distribution, and it is accepted or rejected accord-
ing to a certain probability so that the target distribution is preserved. In Gibbs sampling, the
parameter θ is partitioned into several components, and at each iteration, we update each
component in turn by drawing from its conditional posterior distribution given all other
components. The actual MCMC algorithm used for fitting our two-stage model is a hybrid
algorithm that cycles through the coordinates of the parameter vector in a Gibbs-sampling
fashion but uses an M–H strategy for each conditional draw. The algorithm is carefully mon-
itored; several Markov chains from different starting values are run to ensure that they reach
the same target distribution.

3. Joint Fitting: Results and Discussion

We now discuss the results from the fitted hierarchical model. This is a more coherent anal-
ysis than the separate fitting of the two stages as described in Section 2.1. Thus, the results
in this section represent our final estimates.

3.1. Cycle-to-Cycle Dependencies

Of particular interest are the estimates of the three second-stage relationships. These esti-
mates are summarized in Table 6, based on an MCMC calculation that fits the two stages
jointly, using available data from January 1749 to October 2011. As noted before, because
of the large number of observations, cycle characteristics such as ci, t

(i)

0 , t (i)max, and t
(i)

1 are
well constrained by the first-stage model (Equation (3)); hence the estimates reported in Ta-
ble 6 are quite close to those based on an ordinary least squares (OLS) regression using fixed

ci , t
(i)

0 , t (i)max, t
(i)

1 . For example, with ci , t
(i)

0 , t (i)max fixed at their respective posterior means, the
OLS estimates (standard errors) of δ2 and γ2 are 8.5(±0.8) and −0.43(±0.08), respectively.
The standard errors in Table 6 are slightly larger because they account for the extra uncer-
tainty in estimating ci , t

(i)

0 , t (i)max, and t
(i)

1 . The quality of the predictive relationships is shown
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Figure 5 Ratios of predicted
parameter values to measured
values. The values predicted for
the parameters in each cycle
(amplitude, rise time, and fall
time), based on the parameters of
the previous cycle, are compared
with the values directly estimated
for that cycle.

in Figure 5, where we display the ratios of the values predicted from the previous cycle to
those measured for that cycle, together with one-σ prediction error bars. Here the posterior
mean estimates (as in Table 2) are regarded as measured or estimated values; the predicted
ones are computed using the equations in Table 6. The prediction error bars are computed
by simulation. Note that the coefficients δ̂i , γ̂i , i = 1,2,3, are estimated using all cycles
(including those that come after the one being predicted).

3.2. Predictions for Cycle 24

One advantage of a Bayesian hierarchical model in this context is that, once we obtain
the samples from the posterior distribution, prediction of the characteristics of the current
(incomplete) cycle is obtained automatically. Table 7 reports summaries of the posterior
inference for Cycle 24, using data up to November 2008, May 2010, and October 2011,
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Table 6 Summary of three relationships and their parameter estimates when fitting the two stages jointly.
The fitted values are posterior means, and the standard errors are posterior standard deviations.

Cycle parameter Relationship Fitted value (Std. err.)

Amplitude ci+1 ∼ δ1 + γ1ci/(t
(i+1)
0 − t

(i)
max) δ̂1 = 4.1 (±1.5)

γ̂1 = 3.9 (±1.0)

Time to maximum t
(i+1)
max − t

(i+1)
0 ∼ δ2 + γ2ci+1 δ̂2 = 8.5 (±1.0)

γ̂2 = −0.43 (±0.09)

Time to minimum t
(i+1)
1 − t

(i+1)
max ∼ δ3 + γ3ci+1 δ̂3 = 4.3 (±1.5)

γ̂3 = 0.31 (±0.15)

Table 7 Cycle 24 predictions based on MCMC fitting of the two stages jointly. Fitted values are posterior
means, and standard errors are posterior standard deviations. Max. SSN refers to the smoothed monthly

average sunspot number at the peak of Cycle 24. Time to rise [years] is defined as t
(24)
max − t

(24)
0 .

c24 Max. SSN Time of max. [yrs] Time to rise Cycle length

November 08 9.0 ± 1.6 96 ± 32 Mar 2013 ± 0.98 4.7 ± 1.1 11.9 ± 1.7

May 10 8.2 ± 1.2 77 ± 21 May 2014 ± 0.69 5.3 ± 0.84 12.1 ± 1.6

October 11 9.3 ± 0.77 97 ± 15 Jan/Feb 2014 ± 0.48 4.8 ± 0.55 12.1 ± 1.5

respectively. Based on data up to October 2011, Cycle 24 is estimated to rise to maximum in
January – February 2014 ± six months, with a maximum smoothed monthly sunspot number
of 97 ± 15, where the estimates are posterior means and the error bars are posterior standard
deviations. (The maximum smoothed SSN, or the expected SSN at solar maximum, is (β +
ci)

2 + σ 2, after accounting for the square-root transformation in Equation (3).) It is likely to
be a weak cycle with a longer-than-usual (an expected 12.1 years) total duration, although
the uncertainty associated with this estimate is fairly large. We observe that the estimated
maximum smoothed sunspot number is relatively stable across the three analyses. The large
error bars associated with the November 2008 analysis highlight the inherent difficulty in
making predictions before or at the onset of a cycle.

Figure 6 illustrates the estimates of the averages of Yt in Equation (3) (specifically,
(β + Ut)

2 + σ 2). The solid curve represents the posterior mean, while the upper (lower)
dashed curve represents the 95 % (5 %) posterior quantile. Note that estimates for time
points in the past are well constrained because of the available data, but future predictions
are much more variable. The two-stage model is well suited for combining two pieces of
information that have potential predictive power: sunspot-number observations that clearly
belong to Cycle 24, and the prescription of the second-stage model (Equations (4) – (6))
which relates the characteristics of Cycle 24 to those of previous cycles. Given the relatively
few observations at the beginning of Cycle 24, the predictions are heavily influenced by the
second-stage model. As Cycle 24 progresses, direct observations will play a heavier role,
and the uncertainties associated with the predictions will diminish. This is illustrated by the
reduction in the uncertainty band in the bottom panel which includes 35 more months of ob-
servations (up to October 2011) compared to that in the top panel (up to November 2008).
(This reduction in uncertainty is also apparent from Table 7.) When the more recent data are
included, the predictions are more driven by direct observations from Cycle 24; the fitted
values are similar, but the 90 % predictive intervals are appreciably narrower. This shows
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Figure 6 Predictions of Cycle
24 obtained by fitting the two
stages jointly, using data up to
November 2008 (top), May 2010
(middle), and October 2011
(bottom). The posterior mean of
monthly average sunspot
numbers is shown as the solid
curve, and the 5 % and 95 %
posterior quantiles are shown as
dashed curves. The top figure
illustrates predictions for a
completely new cycle, and the
bottom for one that is well in
progress. May 2010 is chosen, as
it lies halfway between
November 2008 and October
2011. Note that the uncertainty in
the predictions is reduced
considerably when more data
from the current cycle are
included.

that the latest data are reasonably consistent with the second-stage relationships, and com-
bining the two stages shrinks the error bars.

4. Summary

We have carried out a comprehensive statistical analysis of the sunspot record. After suit-
ably transforming the data to stabilize variance, we parameterized the shape of a cycle by
its amplitude (maximum in the sunspot number), time to rise to maximum, time to fall to
minimum, and the gap between its end and the start of the next cycle. By computing cor-
relations between these parameters both within each cycle and between adjacent cycles, we
have derived a set of three predictive relations. These relations are ordered, i.e. sequential:
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amplitude must be predicted first before duration and rise time. Correlations that depend
on computing amplitude second are not robust, as they are subject to two influential points
from early in the sunspot record (see also Vaquero and Trigo, 2008). Analyses carried out in
a different order will thus lead to spurious results.

These relations can be used to predict the values of the parameters for the following cycle.
We find that the best estimate for the peak in Cycle 24 is in early 2014, with an uncertainty
of half a year. The maximum in the smoothed sunspot-number record is expected to be
≈ 97 ± 15, and the cycle is expected to last 12.1 ± 1.5 years from the latest solar minimum
(approximately November 2008). These are in the middle of the range of predictions in the
literature prior to the onset of Cycle 24, and are consistent with the current estimates of the
cycle parameters.

We have searched for, but do not find, any evidence for persistence beyond one cycle.
There is no predictive power beyond the cycle that follows; no correlations are present, and
the cycles do not retain any memory.

We also find that the cycles do not ever vanish completely. We find statistical evidence
that the next cycle usually begins before the current cycle ends, as the gap between the end
of a cycle and the start of a new one is usually negative. Furthermore, we find that sunspots
do not vanish entirely even if the gap is positive; however, the data are not sufficient to tell
whether this holds true even in the absence of activity cycles.
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