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Abstract

This thesis comprises three applications of Markov chain Monte Carlo methods

in astrophysics and bioinformatics. The recent development of high resolution

satellite telescopes and the technological advances in genotyping technologies for

Single-Nucleotide Polymorphisms (SNPs) have given us a wealth of data in as-

trophysics and genetics and tremendous opportunities for statisticians to develop

complex models and computation techniques. In recent years, thanks to the the

powerful Markov chain Monte Carlo (MCMC) sampling method and improve-

ment in computing speed, one can handle the complicated models with large data

sets efficiently.

The main statistical framework for the applications in this thesis is data augmen-

tation, which constructs iterative optimization or sampling algorithms via the in-

troduction of unobserved data or latent variables. For deterministic algorithms,

the EM (Expectation-Maximization) algorithm is generally used for maximizing a

likelihood function or a posterior density. For stochastic algorithms, data augmen-

tation and Gibbs sampling algorithms are popular for posterior sampling.

The first paper describes a new and powerful method for estimating the distribu-

tion of the temperature of matter in the outermost layer of the atmosphere of a star

using data augmentation and Bayesian hierarchical modeling technique. This new

method enables us to fit to either a selected subset of emission lines with measured

fluxes or to perform a global fit to the full wavelength range of the instrument, to

iii



obtain error bars to determine the significance of features seen in the estimation,

and to directly incorporate prior information such as known atomic data errors,

systematic effects due to calibration uncertainties, etc.

The second paper proposes a novel genotype clustering algorithm, based on a bi-

variate -mixture model, which assigns a set of probabilities for each data point

belonging to the candidate genotype clusters. Furthermore, the model allows us to

use the probabilistic multi-locus genotype matrices as inputs for haplotype phas-

ing. Combining the genotyping and phasing steps, we can perform haplotype in-

ference directly on raw readouts from a genotyping machine such as the Taqman

assay, with less error than other competing methods.

The third paper develops a Bayesian Linkage-Disequilibrium mapping model for

complex diseases. Haplotype analysis of disease chromosomes allows us to lo-

calize disease mutations as well as to identify historical recombination events de-

scending from founder haplotypes. The primary improvement of this model over

previous ones is to discern the locations of two disease mutations as well as their

interaction effects.
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A Bayesian Approach to the Reconstruction of
Differential Emission Measure

Abstract

Astrophysicists are interested in studying the physical properties of the environ-

ment of a star such as its composition and temperature structure. This distribution

of the temperature, known as the differential emission measure (DEM) provides

a powerful tool for the characterization of the temperature structure of a stellar

corona. Data are collected using state-of-the-art space-based telescopes such as the

Chandra X-ray Observatory; Chandra can register the energy of each incoming

X-ray from the source star. An ion at a given temperature in the stellar corona pro-

duces X-rays with a given energy following a certain conditional distribution of

energy. These conditional distributions is computed using detailed quantum me-

chanical computations and ground-based laboratory measurements. Given this set

of conditional distributions and the the observed marginal distribution of X-ray en-

ergies, we aim to reconstruct the marginal distribution of the temperature and the

elemental abundances of the corona. Numerically, this involves a difficult inverse

problem, which we accomplish using the method of data augmentation. Specifi-

cally we treat the photon count in each of a number of temperature bins and the

count made up of each of the elements and other variables as missing data. Under

this construction, we are able to use statistical methods that are designed to han-

dle missing data problems. In particular, we use the EM Algorithm and Markov



chain Monte Carlo to compute the maximum a posteriori estimates and the high-

est posterior density intervals, respectively. We implement a Bayesian multi-scale

(wavelet-like) prior distribution to smooth the DEM distribution, which gives us

the flexibility to overcome the lack of information especially with low count data

and high proportion of missing data. This approach allows for global spectral

modeling, with the ability to include prior information in the form of known se-

quences and relative strengths of spectral lines; the inclusion and propagation of

errors in atomic data; and a proper accounting of the uncertainties in the recon-

structed DEM. We provide several simulation studies with both high-count and

low-count data to evaluate the proposed method and Capella data DEM recon-

struction results.
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1.0 Preface

This work is a joint work with David A. van Dyk, Department of Statistics, Uni-

versity of California at Irvine, Vinay Kashyap, Harvard-Smithsonian Center for

Astrophysics, and Alanna Connors, Eureka Scientific. This project is also a prod-

uct of collaborative effort of the the California-Harvard astrostatistics collaboration

(CHASC) whose members include J. Chiang, A. Connors, D. van Dyk, D. Esch, P.

Freeman, H. Kang, V. L. Kashyap, X.-L. Meng, A. Siemiginowska, E. Sourlas, T.

Park, Y. Yu, and A. Zezas. The funding for this project partially provided by NSF

grant DMS-01-04129 and by NASA Contract NAS8-39073 (Chandra X-ray Center).

1.1 Introduction

The corona is the outermost layer of a stellar atmosphere. Figure 1.1 shows an opti-

cal image of the solar corona. Astrophysicists have been interested in studying the

physical environment of stellar coronae such as its temperature and the elemental

composition. The distribution of the amount of emission at different temperatures

in a stellar corona is called the differential emission measure (DEM) and the frac-

tions of each element compared to hydrogen are called the elemental abundances.

In recent years, a number of new space telescopes have produced a tremendous

amount of new data and allowed us to collect data from a wide range of energy

range, from ultra-violet to -ray, with very high resolution. The Chandra X-ray Ob-

servatory, for example, produces energy spectra at least thirty times sharper than

any previous X-ray telescope. However, even for the best X-ray telescope such as

Chandra, there are some measurement errors that can cause a biased estimation if

the error structure is not correctly accounted for.

The complexity of available data requires us to take a new and sophisticated statis-

tical approach to estimate the DEM and the elemental abundance. Corona emits its

3



Figure 1.1: The Solar Corona.
The Sun’s corona, photographed on August 11th, 1999 during a total solar eclipse.
The corona is invisible during normal conditions because the surface of the Sun is
much brighter than the mostly X-ray-emitting corona. The coronae of other stars
can be detected with X-ray telescopes. (Image Credit: The European Southern
Observatory PR Photo 24a/01)

photons. Because their energies follows a stochastic process that is involved with

the DEM and the abundances, the DEM and abundances are indirectly observed

by us in the form of a stellar spectrum (i.e., the photon counts according to the

energies of the photon). Therefore, we can reconstruct the DEM and the elemental

abundances from the photon count collected by the telescope given the quantum

mechanics of the atoms. Moreover, the instrumental measurement error adds an-

other level of the complexity. We describe the complex models that are designed to

account for both the physics involved in the creation of electro-magnetic emissions

at the astronomical source and the complexities of the data collection mechanisms

inherent in astronomical instruments. This is similar to a well-known Poisson in-

verse problem. Previous approaches (Dupree et al. (1993), Kashyap and Drake
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(1998)) focused on examining a limited number of (manually) selected influential

emission lines to compute the DEM. This strategy can result in selection biases and

large uncertainties in the estimates. In this paper, we apply a new method of DEM

reconstruction to stellar extreme-ultra-violet(EUV) and X-ray data within a model

based Bayesian framework. This method allows us to find a set of DEM parameters

that describe the observed data best in terms of the Bayesian posterior distribution

and simultaneously determine the element abundances, to incorporate atomic and

calibration errors as prior information, and to produce error estimates on the fitted

parameters.

In Section 1.2, we explore the scientific background of high-energy electro-

magnetic emission of stellar corona. In particular, we describe the relationship

between the temperature and the composition of the source and the observed en-

ergy spectrum and in Section 1.2.3, we introduce the spectral model and its pa-

rameters. In Section 1.3, we explain the data collection process and instrumental

effects. In Section 1.4, we introduce Bayesian missing data formulation to solve

the numerically challenging inverse problem and their posterior distributions of

the model parameters and missing data and we implement a Bayesian multi-scale

(wavelet-like) model to smooth the DEM distribution, which gives us the flexibil-

ity to overcome the lack of information especially with low count data. Finally in

Section 1.6, simulated data examples and Capella DEM reconstruction examples

will be provided.

1.2 Scientific Background

1.2.1 Energy Spectra

The basic goal of high-energy spectral modeling from a statistical perspective is to

model the distribution of the energy of high-energy photons (EUV, X-ray, or -ray)

5



from a particular astronomical source. Such a spectral model typically contains

several additive components which can be formulated as a finite mixture model.

Roughly speaking, the components can be split into two groups: continuum terms,

which describe the distribution over the entire energy range of interest and emission

lines, which are local positive aberrations from the continuum.

Continuum. The center of the star is composed of very hot gas, which produces

copious photons that random walk their way to the surface of the star. This process

creates a continuous spectrum, or continuum, of radiated energy and is known

as blackbody emission. As another example, consider a high-temperature low-

density plasma where photons are not thermalized by repeated collisions with ions

in the plasma; the transitions between levels in free electron, induced by electro-

static interactions with ionized nuclei result in a so-called thermal Bremsstrahlung

continuum. Among other things, the shape of the continuum indicates the temper-

ature of the source. The shape of the continuum, as the name suggests, is smooth

and smooth compared to emission lines. An example of a simple continuum ap-

pears in Figure 1.2.

Emission Lines. Emission lines are local features added to the continuum and

represent extra emission of photons in narrow bands of energy. Such extra emis-

sion is due to photons that are emitted when an electron falls to a lower energy

shell of a particular ion; the abundance of the extra emission indicates the abun-

dance of the ion in the source. Thus, analysis of emission lines is informative as

to the chemical composition of the surface of the astronomical source. Statistically

the emission lines are represented by adding Gaussian, Lorentzian (i.e., a -density

with one degree of freedom), or delta functions to the continuum. An example of

emission lines appears in Figure 1.2.
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Figure 1.2: The Model Energy Spectrum.
The figure illustrates an artificial source model energy spectrum. The continuum
is the smooth curve near the bottom of the plot and the sharp peaks represent the
emission lines. -axis represents wavelength ( ), and -axis represents expected
counts.

1.2.2 Differential Emission Measure

The corona is the outermost layer of a stellar atmosphere and contains very low-

density (about particles/cm ) and very hot ( K) plasma. The DEM is a

measure of the distribution of the emission at different temperatures in a stellar

corona. Figure 1.3 illustrates the solar corona by imaging the Sun in three wave-

lengths1. The first panel is an optical image taken on March 29, 2001 of a portion of

the Sun and illustrates the largest sunspot group to appear in a decade; at its peak

this group was over ten times the size of the Earth. The second and third panels

illustrate an EUV image and an X-ray image of the same region of the Sun, re-

spectively. Although in visible light the sunspots appear as dark areas against the

bright surface of the Sun, they are bright in the EUV and X-ray. The X-ray image

shows large loops of glowing plasma arching above the sunspot group. The reason

that the images look so different is that they are actually revealing different layers

of the Sun’s atmosphere. The visible photons originate from the photosphere, the

1URL: http://antwrp.gsfc.nasa.gov/apod/ap010419.html
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Figure 1.3: The Sun.
The three images are, from top to bottom, optical, EUV, and X-ray images. A stellar
DEM is a representation of the distribution of the relative emissions at different
temperatures in a stellar corona. (Image Credit: SOHO - MDI / EIT Consortium,
Yohkoh / SXT Project.)
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Figure 1.4: The Solar DEM in an Active Region.
This is a plot of the relative emission in a region of the solar corona with high
sunspot activity as a function of the temperature of the plasma. The plot can be
compared with that in Figure 1.5, which plots the solar DEM in a quiet region of
the Sun. (Brosius et al., 1996)

Figure 1.5: The Solar DEM in an Quiet Region.
This is a plot of the relative emission in a region of the solar corona with no sunspot
activity as a function of the temperature of the plasma. The plot can be compared
with that in Figure 1.4, which plots the solar DEM in an active region of the Sun.
(Brosius et al., 1996)
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lowest and coolest layer at about 5000 degrees Kelvin, the EUV image reveals the

chromosphere/transition region which is above the photosphere and hotter at 10–

100 thousand degrees Kelvin. Finally, the X-rays originate from the solar corona

that is even higher and is even hotter, at least a million degrees Kelvin.

The X-ray image in Figure 1.3 illustrates the complex structure in the intensity

of the X-ray emission across the solar corona. The structure of the emission is a

tracer of temperature and density in the corona. (The visible image also reveals

temperature structure, the sunspots are much cooler than their surroundings. X-

ray images, however, are not useful for viewing the temperature structure of the

relatively cool photosphere.) This is illustrated in Figure 1.4 that plots the relative

emission from the solar coronal region with high sunspot activity as a function of

temperature; this is plot of the solar DEM in an active region. Figure 1.5 is the

same plot but in a region with no sunspot activity. Notice that there is relatively

less very hot plasma in the quiet region of the solar corona.

Although impressive images of the solar corona are available from the Solar & He-

liospheric Observatory (SOHO)2 and other solar observatory telescopes, very little

is known about the temperature structure of stellar coronae. The stars being very

distant, their disks cannot be resolved with existing resolutions of even the best

telescopes. We can, however, infer their structures indirectly from examining their

spectra. There are clues in the emission lines of stellar X-ray spectra that can be un-

locked using prior information obtained from detailed quantum mechanical com-

putations and ground-based laboratory measurements. A stellar corona plasma is

made up of various ions which can be recognized in a spectrum from their identi-

fying emission lines. Thus, relative strengths of the emission lines corresponding

to different ions carry information about the temperature of the source.

2URL: http://sohowww.nascom.nasa.gov
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1.2.3 Building the Spectral Model

Our spectral model can be split into two broad groups, the continuum term and

emission lines. The number of photons from emission lines, so called spectral line

fluxes, and continuum fluxes depend on the amount of the elements (relative to

the amount of hydrogen) in the corona, so called element abundance and the rela-

tive emission in coronal region at different temperature (DEM). We emphasize that

we are only interested in the “relative” magnitude of our parameters (the element

abundances and the DEM).

Emission Line Spectral Model

The photon intensity corresponding to spectral line generated in element is the

volume integrated product of the line contribution function, the elemental abun-

dance , and the DEM at a given temperature :

(1.1)

where is a known constant which includes the wavelength of the transition and

the stellar distance, is the elemental abundance of element , is the con-

tribution function of the line for element , and is the DEM at temperature

(Kashyap and Drake, 1998). This function works as a relative probability that an

emitted photon at a given temperature falls into each emission lines. Here, we use

the term element to refer the chemical composition of the corona such as hydro-

gen(H) and we use superscript to refer the emission lines. We define the ele-

mental abundance as the relative abundance of element to hydrogen(H) and

Helium(He)’s abundance. We fix both to 1. Other abundances are given

relative to solar photospheric abundances. For example, the iron(Fe) abundance,

for a corona implies that the corona has twice as many iron atoms relative

to hydrogen(H) atoms in its corona compared with the Sun. The energy of an emis-

sion line, i.e, the location of the line on the spectrum originating from a particular
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ion is predetermined because the energy emitted corresponds to the difference in

the discrete levels of energy. Although it is technically possible to compute exact

values of the constant term and in equation (1.1), we can only compute

their relative values because we do not take the exposure time into account in our

model. In other words, when the data set has longer or shorter exposure time,

our method produces higher or lower DEM values, respectively, but the absolute

magnitude of the values are meaningless.

Thanks to quantum physics calculations, we are given the contribution func-

tion, . The contribution function is obtained from the Atomic Database

(ATOMDB)3 and it provides at 50 discrete temperatures, which are

Kelvin. Since, is not fully specified parametrically for

every temperature value, but only available at selected temperatures, assuming

that is smooth enough to be linearly approximated, we interpolate the val-

ues of the contribution function on evenly spaced temperature values in log-scale

( and ). Then, we can express the vector of the emission line intensities

originating from element by

(1.2)

where is the electron number density and is the volume of the plasma

at temperature and and ,

, and . We call the emissivity matrix. (See

Kashyap and Drake (1998) for rigorous derivation of the DEM)

3URL: http://cxc.harvard.edu/atomdb/(Smith et al., 2001)
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The dimension of is , where is the number of emission lines within

the energy range of the data made up of element . For example, between 80 and

140 , there are no H-emission lines, but there are 3,270 Fe-emission lines listed in

ATOMDB. Each row of corresponds to the location of an emission line, and

each column corresponds to a temperature point.

Continuum Spectral Model

The continuum4 corresponding to a energy bin is defined in a similar way to

equation (1.1):

(1.3)

where and . The term energy bin refers to an

(artificial) energy range corresponding the source energy spectrum. The dimen-

sion of is , where is the number of energy bins in the data and is

same for all elements. Each row of corresponds to an energy bin, and each

column corresponds to a temperature point.

Mixture of Emission Lines and Continuum

Each element has a continuum emissivity matrix and a line emissivity matrix.

There are 28 emissivity matrices in total. Because the energy bin and emission

line location do not correspond to each other, we need to identify which bin an

emission line belongs to, when adding the two components of the fluxes to an

4Continuum can be modeled by a parametric curve and fit via generalized linear models. See
van Dyk et al. (2001) and van Dyk and Kang (2004) for example. However, in this paper, the con-
tinuum curve is determined by contribution function and the DEM.

13



energy bin. For example, the flux from the emission line located at 6.690 is

added to the energy bin (6.6875 , 6.7 ). We denote this matching process by

, which matches the dimension of the line emissivity matrix to the

continuum emissivity matrix, so that we can express the total emissivity matrix

as element abundance-weighted sum of emissivity matrices, which equals to

. Therefore, the expected photon counts at en-

ergy bin , has typical Poisson image process equation:

(1.4)

where is the total number of elements, i.e., .

Note that the column sums of the total emissivity matrix,

are not equal. Thus, photons originating from different temperatures have differ-

ent rates to be emitted as if there were different censoring probability for different

temperatures. We call this property emissivity matrix censoring. We will discuss this

issue later in Section 1.4.

1.3 Data Collection and Instrumentation

1.3.1 Detectors and Gratings

There are two detectors aboard Chandra; one is a high spatial resolution micro-

channel plate detector (the High Resolution Camera, or the HRC), and the

other is an imaging spectrometer with higher spectral resolution (the Advanced

CCD(Charge-Coupled Device) Imaging Spectrometer, or ACIS). Both instruments

14



are essentially photon counting devices, and register the arrival time, the energy,

and the (two-dimensional) direction of arrival of incoming photons. Because of in-

strumental constraints, each of the four variables is discrete; the high resolution of

Chandra means that the discretization is much finer than was previously available.

The ACIS detector is composed of 10 CCDs, each of which has 1024 1024 pixels

for spatial data. Because the data are discrete, they are compiled into a four-way

table of photon counts. In our spectral application, we only focus on the energy

variable, hence the time and the two special coordinates are marginalized out to

produce one-way table of photon counts at each energy. Due to its digital nature,

Chandra records the photon counts in a number of pre-specified energy bins.

It is possible to use one of two diffraction gratings with either of the two detectors.

A diffraction grating is placed in the beam of X-rays and diffracts the photon by

an angle that depends on the photon wavelength. (The wavelength of a photon

is proportional to the reciprocal of its energy.) One of the two gratings, the High-

Energy Transmission Grating Spectrometer (HETGS), is designed for high-energy

X-rays, the other, the Low-Energy Transmission Grating Spectrometer (LETGS), is

designed for low-energy X-rays. If Chandra is focused on a point source, such as

a star, and a grating is in place, the energy of the photons can be recovered from

the locations where they are recorded on the detector. Thus, the gratings greatly

increases the spectral resolution of both of the detectors. Because the spectral res-

olution obtained with gratings is dominated by the size of the image, however,

the advantage of the grating for spectral analysis is diminished for more extended

source, such as nebula. Because the gratings also refract about 90% of the photons

away from the detector, they are ordinarily only used with bright sources.

15



1.3.2 Stochastic Censoring

Photons arriving at the detector are not always recorded by the detector; a photon

has a certain energy dependent probability of being recorded by the detector. This

relative efficiency is called effective area. The mirrors on Chandra reflect the X-rays to

focus them on the detector. Unfortunately, photons do not reflect uniformly. Each

X-ray has a certain probability of being reflected away from the detector or being

absorbed by the telescope mirrors. Since this probability depends on the energy

of the photon, the probability that a photon is recorded by the detector depends

on its energy. This process results in non-ignorable missing data mechanism and

this should be accounted for to avoid biases in model fitting. See the change from

the the third plot to the fourth plot in Figure 1.6. The height of the curve, i.e. the

photon intensity, decreases because some of the photons are not registered by the

detector.

1.3.3 Measurement Errors - Blurring

Chandra focuses X-rays with mirrors. Because the mirrors do not focus per-

fectly, energy spectra are blurred. The so-called line-spread function characterizes

the probability distribution of a photon’s recorded energy location relative to its

true energy. The shape of the distribution varies with the energy of the incom-

ing photon. Fortunately, in spectral analysis, well-known distributions such as

-distribution or normal distribution is accurate enough for data within a small

energy range. For example, for Chandra HRC-S/LETG data with wavelength

range about 1-180 (1 = 1.0 meters), -distribution with 4 degree of free-

dom serves as a good approximation. Data from EUVE (the Extreme Ultraviolet

Explorer) have a Gaussian line-spread function with standard deviation equal to

0.17 . The change from the fourth plot to fifth plot in Figure 1.6 illustrates how a

delta-function-shaped emission line become a bell-shaped curve due to the blur-
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ring.

1.3.4 Background Contamination

The photon counts detected by the telescope do not directly correspond to the

source of interest. They are the mixture of the source photon counts and counts

originating from other celestial objects (background counts) that are near the line

of sight of the the source of interest. After adjusting for exposure time and the area

in which the background counts are collected relative to that in which the source

counts are collected, it is standard practice to directly subtract the counts observed

in the background exposure from those observed in the source exposure, and treat

the resulting counts as if it were source only counts. This procedure is problem-

atic, because it can result in negative bin counts when the source counts are weak.

We will describe a better strategy to model the counts in the two observation as

independent Poisson random variables, one with only background intensity and

the other with intensity equal to the sum of the background and source intensities

(Loredo (1992), van Dyk (2003)). See the transition from the fifth plot to sixth plot

in Figure 1.6. Background contamination adds another level of complexity.

1.3.5 Data Distortion Model

There are two major data distortion effects due to the instrument: effective area(or

stochastic censoring) and blurring as described in the previous sections. The effec-

tive area of bin is the probability that an X-ray is not refracted off the detector

and it varies with the photon energy. A blurring of the photon energy occurs be-

cause a photon that arrives with energy corresponding to bin has probability

of being recorded in detector channel , where the channel refers to the energy

ranges corresponding the observed data. Note that the matrix for a

“perfect” resolution detector would be an identity matrix provided that the bins
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Figure 1.6: Degradation of Model Intensity.
The figure illustrates the various stochastic processes that significantly degrade
the source model and result in the Poisson intensities for the observed counts. (An
artificial source model is used.) For all plots, -axis represents wavelength ( ), and

-axis represents expected counts. The first plot shows the source intensity due to
the continuum, the second plot shows the source intensity due to the emission lines
and the third plot is the sum of the two components. The fourth plot illustrates
stochastic censoring due to non-constant effective area and the fifth plot shows the
blurring effect. Note that the three Fe-lines around 122 become indistinguishable
after the blurring. The last plot shows background contamination; photon counts
from the background are added to the counts from the source.
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and channels coincide. Therefore, we model the observed counts at channel with

background contamination as independent Poisson variables with intensity

(1.5)

where is the Poisson intensity of the background at channel . The equation

(1.5) is equivalent to the following matrix representation

(1.6)

where is the vector of expected detector counts corresponding to

channels, is the vector of the expected source counts correspond-

ing to energy bin, is a diagonal matrix of the effective

area, is the blurring matrix, and is the vector of

expected background counts. We call spectral response matrix. If the probability

that a photon is recorded at a distant energy bin from its true energy is small, i.e.

the tail probability of the line spread function is small, then we can save computa-

tional time by considering only near-diagonal elements of the spectral matrix.

In our model, we are provided with a known background channel intensity up

to a normalizing constant, that is, , where is a parameter for

the background normalizing constant.

We can re-write the observed photon intensities as a function of emissivity matri-

ces, DEM, and abundances:

(1.7)

Given the channel intensity , the observed channel counts follow independent

Poisson distribution. Therefore, the observed data likelihood is:

(1.8)
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where denote the collection of model parameters, , where

. Note that other parameters are functions of (

), but the notation is omitted for notational convenience in the

following.

1.3.6 Prior Specification

We use the conjugate prior for

for all and the conjugate prior for

These prior distributions are chosen simply for the theoretical justification and

not designed to be informative. For non-informative prior distributions, one can

choose and . For , however, we choose the conjugate

prior distributions for multi-scale smoothing, to smooth the DEM estimates. The

details of this prior are discussed in Section 1.4.2. All the parameters are indepen-

dent a priori.

1.4 Bayesian Deconvolution Methods

1.4.1 Hierarchical Missing Data Structuring

Mathematically, if we were provided with the expected channel counts , finding

the maximum likelihood estimate of the model parameters ( , , ) can be com-

puted by solving equation (1.7), which involves multiple matrix inversions. In

practice, has tens of thousands of components, while has fewer than 100. This

may seem to be a simple task, since there are far more data points than unknown
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parameters, but the information regarding the emission line counts and the contin-

uum counts is very sparse: and are nearly singular and the ML estimate

can be very poorly behaved especially when the relative information of observed

data to the augmented data is very low as we will show later in Section 1.6.2 with

Chandra data example. We suggest Bayesian methods and informative prior in-

formation for .

As described in the previous sections, the model has multiple components (e.g.,

background, continuum and emission lines), high-dimensional parameters, and

complex structure due to large dimensional matrices. We can formulate the model

in terms of a set of layers of missing data. For example, data augmentation meth-

ods such as the EM (Dempster, Laird, and Rubin, 1977) or DA algorithm (Tanner

and Wong, 1987) can be used to effectively fit highly structured models that are for-

mulated in terms of missing data or latent variables. Thus, we impute the missing

data at each level and find the conditional posterior distribution of the next level

of missing data given the current level. This will eventually lead us to estimating

the ideal photon counts emitted from each temperature value, which makes the

estimation of straightforward.

To formulate the model in terms of missing data, we can state four major levels

of missing photon counts: channel level, bin level, temperature level and element level.

For notational convenience, we distinguish these levels by using the notation , ,

and , respectively. Recall that the energy channel refers to the energy ranges

corresponding the observed data and the energy bin refers to an (artificial) energy

range corresponding the source energy spectrum. In other words, channel level

photon counts can be interpreted as a histogram whose bins are broken by the en-

ergy channel ranges. We also use index for channel level,

for energy bin level, for temperature level, and for ele-

ment level consistently throughout the paper. We also use superscript to denote

a lower level of augmentation within a level. For example, at energy bin , the con-
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ditional distribution of the photon counts recorded by the detector given the

total photon counts arriving is formulated with a binomial distribution with a

success probability, ; . We outlined the hierarchy of

augmented data structures in Table 1.1 and in Figure 1.7.

This hierarchical structuring is desirable especially when the joint distribution of

the missing data and the parameters are factorized into several terms, i.e., indepen-

dent conditional distributions. In particular, the joint posterior distribution of our

overall model has the following conditional distributions corresponding to each

level of the missing data:

(1.9)

where is the prior distribution of the model parameters. We will discuss

the choice of prior distribution in Section 1.4.2. We only included relevant vari-

ables in the condition of the conditional distributions in equation (1.9) to show the

conditional independent structure among the missing data.

In general, augmenting a higher level of missing data given a lower one within a

major level involves separating components from the mixture of the components,

and augmenting higher level missing data given lower ones between major levels

corresponds to “inverting” the emissivity matrices. The model describes the rela-

tionships among the variables from top to bottom, while the data augmentation

algorithm finds the posterior distribution of missing data from bottom to top, as in

Table 1.1.

Note the similarity in construction in the emissivity matrix (equation (1.4)) and

the spectral response matrix (equation (1.6)). To solve inverse problems for both

equations, we need two major processes involved with missing data construction;

the stochastic censoring and the multinomial dispersion process according to the line

spread function or the contribution function.
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Level Variable Notation
1. Count of photons originating from element ,

Contribution Function
2a. Ideal photon count in temperature bin ,

Stochastic Censoring
2b. Stochastically censored photon count at temperature bin

Emissivity Matrices
3a. Ideal bin count at energy bin

Stochastic Censoring
3b. Stochastically censored energy bin count at energy bin

Line Spread Function
4a. Source count at energy channel
4b. Background photon count at energy channel

Background contamination
4c. Observed count for energy channel ,

Table 1.1: Hierarchical Missing Data Variables for Data Augmentation.
We use index for channel level missing data, for energy
bin level missing data, and for temperature level missing data, and

for element level missing data throughout the paper. Augmenting
higher level missing data given lower ones within a level involves separating com-
ponents from the mixture of the components and augmenting higher level missing
data given lower ones between levels corresponds to “inverting” the emissivity
matrices or response matrix.

Figure 1.7: Graphical Representation of the Data Augmentation Scheme
The figure illustrates the conditional dependency of the various missing data and
parameters. The circles represent the missing data and the diamonds represent
the model parameters. Letters without boundaries are known constants. Arrows
connecting missing data represent the conditional dependency from a higher level
of missing data to a lower level of missing data.
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Stochastic Censoring and Efficient Computation

Since the multiplicative constant term for the emissivity matrix does not affect the

analysis on the relative DEM, we can freely re-normalize all the emissivity matri-

ces. The normalizing constant is determined to achieve a fast algorithm, in other

words, to reduce the augmented information for using conditional augmentation

(Meng and van Dyk, 1997; van Dyk and Meng, 2001) by reducing the counts at-

tributed to the censored photons. In general, the EM rate of convergence depends

on relative information of observed data to the augmented data and the condi-

tional augmentation approach is to minimize the geometric rate of convergence of

the DA algorithm (Liu et al., 1994).

Recall that the emissivity matrix censoring does not occur uniformly across the

temperature, and the energies of the observed photons are biased toward areas of

low absorption (i.e., the temperatures with large column sums of the emissivity

matrix), complicating parameter estimation. It is important to note, however, that

we need not account for (i.e. augment) all of the censored photons, but rather we

only need the censoring probability to be uniform across the range of temperature.

In particular, we normalize the total emissivity matrix such that the maximum

column sum of the matrix is equal to 1 and we act as if the censoring rate were

( ”column sum of the normalized total emissivity matrix”). We define the nor-

malizing constant by the maximum of the column sum of the total emissivity

matrix, i.e.,

and let be the normalized total emissivity matrix, . By this con-

struction, we create no augmentation situation for the temperature bin with the

maximum column sum, and the least augmentation for other temperature bins,

without distorting the different censoring rates on different temperatures. Note

that changes its value at each iteration of the MCMC algorithms (see Sec-
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tion 1.4.2), because of its dependency on . This means that the data augmentation

scheme is in a sense changing from iteration to iteration.

Let be the -th column sum of . By treating as the probability that a

photon originating in temperature bin is not censored, we have the following

conditional relation for the missing data at the temperature level:

(1.10)

Similarly for the counts in energy bin level

(1.11)

Line Spread Function and Contribution Function

Given the photon counts at a certain temperature, energies of the photons are dis-

persed according to the column vector of the emissivity matrix. Thus, the effect of

the emissivity matrix is modeled as a multinomial distribution:

(1.12)

where is the -th column of . Similarly, the energy channel counts given the

energy bin counts are dispersed according to the column vector of the line-spread

function matrix:

(1.13)

where is the -th column of .

For the multinomial model involved with the element level of missing data and en-

ergy bin level of missing data, we take a similar step as described in equation (1.12).

Note that is a three-dimensional array (element , energy bin , and tempera-

ture bin ). is a weighted sum with respect to element with the weights equal to
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the elemental abundances and is reduced to two-dimensional array. In similar pat-

tern, we can take a weight sum with respect to temperature level with the weights

equal to the DEM. Define such matrix , where its element is

As in equation (1.12), also follows a multinomial distribution

given the element counts :

where is the -th column of .

1.4.2 DA Implementation

Data augmentation methods can simplify this convolved structure with a hierar-

chical formulation. Statistical inference for the unknown model parameters given

the augmented data sets described in Table 1.1 is straightforward and the higher

levels of missing data follow simple standard distributions given the model pa-

rameters and the lower level of missing data. The two conditional distributions

are:

(1.14)

(1.15)

When implementing EM, we take the expected value of the missing data under

equation (1.15) and maximize equation (1.14) with respect to the parameters. When

implementing MCMC sampler, we iteratively sample the missing data and the

parameters under equation (1.15) and equation (1.14), respectively.

We provide the missing data distributions conditional on model parameters in Ap-

pendix.
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Figure 1.8: Multi-Scale Analysis and Modeling Represented on Binary Tree Graph.
The Poisson intensity of a “parent” node is a sum of the Poisson intensity of the
two “child” nodes. The smoothness of the intensities is controlled by the splitting
factors .

Model Parameter Distribution Conditional on Missing Data

We consider the imputed missing data as if they are observed from

, which leads us to directly apply Bayesian multi-scale analysis for the

Poisson estimation problem. Multi-scale analysis gives us a nice tool for smooth-

ing the underlying Poisson intensity. We briefly introduce the algorithm in this

paper. See Nowak and Kolaczyk (2000) for more details.

Let us introduce a new data structure generated with temperature bin counts

as illustrated in Figure 1.8:

where the total level of scale, . (In particular, we choose to use and

.) This produces the same binary tree structure for the DEM parameters:
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We use the following conjugate prior distributions,

Note that we use symmetric beta priors of mean . This prior distribution

shrinks the DEM parameters toward equality, i.e., a smooth DEM reconstruction.

The larger is the smoother the reconstruction is. Sampling or finding MAP

(maximum a posteriori) estimate of is equivalent to sampling or finding MAP

estimate of and ’s. because we can reconstruct DEM via

For sampling the abundance parameters, we treat the imputed elemental counts

as if they are observed. Under the conjugate gamma prior distribution

for all the abundance parameters, we obtain the following pos-

terior distributions:

(1.16)

It is believed that some elements have similar abundance values due to empirical

or theoretical reasons. For example, one can group elements based on observed

similarity of behavior among different elements or group elements with low First

Ionization Potential (FIP) into one group (Al, Ca, Ni, Mg, Si, Fe = Fe) and elements

with high FIP into another (S, C, N, O, Ar, Ne = Ne). This grouping can also help

computationally to speed up the algorithm especially when the elements with low

counts is grouped with the elements with high counts. Thanks to the independence

and conjugate priors for , the posterior distributions of the grouped abundances

are simply defined by the total photon counts and total Poisson intensities of the
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group. For example, as in equation 1.16, the abundance for Ne-group (Ne and Ar)

has the following posterior distribution:

where is the column sum of corresponding to Ne and Ar.

The posterior distribution for the normalizing constant for the background counts

also follows a gamma distribution under the conjugate gamma prior distribution

. The posterior distribution for is

1.5 Atomic Data Errors

Even the best atomic emissivity databases have missing or misplaced lines and

incorrect emissivities. Our method allows known information on these issues to

be directly incorporated into the analysis.

Due to incomplete atomic data measurements as well as detector non-linearities,

the observed locations of lines does not in general match the theoretical locations

that we obtain from ATOMDB. We compensate for this effect by allowing the

strongest lines in the spectral region to be shifted during the fit, and then move

the remaining weaker lines accordingly. The fitting is done again in data augmen-

tation fashion. We separate the channel counts coming from the strong lines and

then impute the energy of the photons by randomly jittering each photon’s en-

ergy within the energy channel range according to the probabilistic model for line

spread function. Given the imputed locations (i.e. energies) of the photons com-

ing from the strong lines, we can easily compute the posterior distributions of the

fitted locations. This process requires two major imputation steps. Firstly, we need
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to identify where a observed photon counts is attributed to. Secondly, we impute

the energies of all photons originating from a particular emission line.

We outline the data augmentation scheme in the following. Given the emission

line intensities and the continuum intensities , we can compute the con-

tribution of the intensity from each emission line and continuum component. For

example, an emission line with model intensity which belongs to energy bin

contributes its intensity to energy channel by . In the same way, we can

compute the contribution from other continuum and emission lines. In practice,

we can limit the number of components contributing to a certain energy channel

by considering only a few emission lines and continuum components near by the

energy channel, because the line spread function is ignorable when the energy is

far away from the center of the function. After computing the amount of the contri-

bution of the components under consideration, we can separate the source counts

in energy channel , into each component via multinomial distribution. We re-

peat this process on the other energy channels near emission line to generate a

histogram of photon counts originating from emission line . Given this informa-

tion, we impute the energies of each photon in the energy channel independently

sampling from truncated line spread function, because the energy of the photon

should be inside of the energy channel range. Given the energies of all the photons

from the emission line, it is straightforward to sample or maximize the center of

the line-spread function; Gaussian or -distribution.

1.6 Results and Model Checking

1.6.1 DEM Reconstruction of Simulated Data

We assume a nominal form for the DEM, generate fluxes for a set of non-standard

abundances, and reconstruct the DEM from the spectrum binned over the Chan-
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dra’s energy bin specification. We take the subset ranging from 3 to 30 ; this cor-

responds to 2,161 wavelength bins of equal width of 0.0125 . There are 10,589

emission lines listed in ATOMDB within the range. The DEM reconstruction

results are summarized in Figure 1.9, and the elemental abundance reconstruc-

tions are summarized in Table 1.2 and the results are consistent with the in-

put values of the parameters for generating the simulated data set. The prior

are used for low degree of smoothing. We

tested the algorithm with various sets of DEM and abundance input. The recon-

struction results were very good in all simulation studies (Other simulation study

results are not shown).

1.6.2 Capella DEM Reconstruction

Capella is a very bright X-ray source and for this reason it has been observed by

every X-ray and EUV space-borne observatory. Capella is a close spectroscopic

binary, at a distance of 12.93 pc 5, consisting of a G8 and G1 giant starts, 6 with

masses of 2.7 and 2.6 , and radii of 12 and 9 , respectively. The binary

has an orbital period of 104 days, not synchronous with the rotational period of the

components, whose separation is 160 7. The raw spectrum of Capella collected

with Chandra appears in Figure 1.10.

51 pc = 3.26 light year
6Temperature of stars are classified with the following characters.: 30,000 K is an ’O’ star, 20,000

K is a ’B’, 10,000 K is an ’A’, 7,000 K is a ’F’, 6,000 K is a ’G’, 4,000 K is a ’K’, 3,000 K is a ’M’. Each
class is broken down into 0 to 9. The sun is a G2 star. A G1 star is a little warmer. A G3 star is a
little cooler. Giant stars are 10 - 100 times bigger than the Sun.

7 Mass of the Sun, Radius of the Sun
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Figure 1.9: Error Bars for the Fitted DEM from the Simulation Study.
The plot draws DEM in log scale. The zigzag line is the posterior mean of the DEM
and the shaded area represents component-wise 95% posterior intervals under low
smoothing ( ); the smooth line is the input DEM; Note that all the intervals
contain the input DEM.

Element Input Value Mean 95% Interval
C 0.8 0.77 (0.70, 0.84)
Si 0.8 0.80 (0.74, 0.87)
N 2 2.00 (1.92, 2.10)
S 0.8 0.93 (0.75, 1.11)
O 0.5 0.50 (0.48, 0.52)
Ar 2.8 2.90 (2.68, 3.12)
Ne 5 5.06 (4.90, 5.22)
Ca 3.8 3.82 (3.45, 4.23)
Mg 3 2.99 (2.86, 3.12)
Fe 2 2.01 (1.95, 2.08)
Al 2.5 2.37 (1.57, 3.17)
Ni 2 2.03 (1.82, 2.26)

Table 1.2: Error Bars for the Fitted Abundances from the Simulation Study.
Posterior Mean and the 95% posterior interval for element abundance. Note that
all the intervals contain the input abundance which we used for data generation.
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Figure 1.10: The Raw Spectrum of Capella ( Aur).
This high resolution spectrum of Capella was collected using Chandra’s HRC-S
with the LETGS. The first panel magnifies the short-wavelength end of the spec-
trum. Notice the numerous emission lines that compose the spectrum; several
important emission lines are labeled.
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EUVE Data

Several authors (Brickhouse et al., 2000; Dupree et al., 1993) have reconstructed the

DEM, based on data from EUVE (the Extreme Ultraviolet Explorer)8. We apply our

methods using the same data set used in the previous studies to make a fair com-

parison with our methods. EUVE has a lower resolution and detects higher wave-

length photons (i.e., lower energy photons) than Chandra. Line-spread function

of EUVE data is about eight times wider than the Chandra’s HRC-S data. EUVE

data’s wavelength bins are more coarsely discretized that Chandra data; EUVE

data’s energy bin size is 0.0674 , whereas Chandra’s is 0.0125 .

We select 4,704 emission lines from ATOMDB by taking the subset ranging from 80

to 140 ; this corresponds to 889 bins of equal width of 0.0674 . Among the 4,704

emission lines, there are 3,270 Fe-emission lines. There are, however, very few

other emission lines (the next frequent lines are 390 Mg-lines) and photon counts

originating from the non-Fe elements are too few to be informative. We decided to

group the abundances based on observed similarity of behavior in other stars. We

group O,C,N, and S to O-group, Ne and Ar to Ne-group, Mg,Al, and Si to Si-group,

and Fe,Ca, and Ni to Fe-group. Recall that we always fix the abundances of H and

He to 1. (There is no single way to group the elements. For example, one can group

all of elements with low First Ionization Potential (FIP) into one group (Al, Ca, Ni,

Mg, Si, Fe = Fe) and elements with high FIP into another (S, C, N, O, Ar, Ne = Ne);

we implemented the code in a way that the grouping can be user-defined.)

We computed the MAP estimate of the DEM using the EM algorithm, starting from

a flat DEM and run until convergence, as measured by the increase in the posterior

density evaluated at two consecutive iterates relative to the value evaluated at

the first of the two iterates; convergence was called when this quantity was less

8EUVE was Launched in June, 1992, conducted the first extreme ultraviolet (70-760 Angstroms)
survey of the sky.
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Figure 1.11: The Fitted DEM of Capella Using EUVE Data Set.
The plot draws DEM in log scale. The solid line is the posterior mode of the DEM
via and the shaded area represents component-wise 95% posterior intervals for the
DEM via MCMC sampling under a beta prior distribution with

. The dotted line is another DEM reconstruction by Dupree et al. (1993)
with the same data set. Dupree’s result is shifted along -axis to match to the range
of our result, because we only fit the relative values of the DEM. Overall shape
of our result agrees with Dupree’s result. Narrow confidence intervals around

provides us very strong information about Capella’s temperature.

Element Mean 95% Interval
O-group (O,C,N,S) 0.173 (0.005, 0.645)
Ne-group (Ne,Ar) 2.500 (1.350, 3.824)

Si-group (Mg,Al,Si) 4.772 (2.031, 8.128)
Fe-group (Fe,Ca,Ni) 5.863 (3.153, 8.398)

Table 1.3: Group Abundances of Capella Using the EUVE Data Set.
Posterior Mean and the 95% posterior interval for grouped elemental abundances.
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than . We used a multi-scale prior distribution with conjugate

prior distribution on the split probabilities at -th level of resolution, where

. We used a flat prior for the background normalizing

constants and the elemental abundances.

We fit the model via MCMC to compute the posterior mean of and component-

wise 95% posterior intervals using the same prior distributions and starting values.

The result appears in Figure 1.11. Narrow confidence intervals around

provides us very strong information about Capella’s temperature.

The 95% confidence intervals for the grouped elemental abundances are summa-

rized in table 1.3. The mean estimate for the elemental abundance for Fe-group is

5.8 and this implies that Capella relative iron abundance is 5.8 times larger than

the one of the Sun.

Chandra Data

The high resolution spectrum of Capella (see Figure 1.10) was collected using Chan-

dra’s HRC-S with the LETGS diffraction grating. We select the energy range from

3 to 30 , corresponding to 2,160 energy bins of equal width of 0.0125 and it

contains 10,589 emission lines within the range. Like in the EUVE example, we

computed the MAP estimate of the DEM using the EM algorithm, starting from

a flat DEM and run until convergence and we fit the model via MCMC to com-

pute the posterior mean and component-wise 95% intervals for model parameters.

Starting from a flat DEM for we ran multiple Markov chains for 15,000 iterations

and discarded the first 5,000 draws, for a burn-in period. We also used wavelength

correction for the emissivity matrix for both EM and MCMC methods; We will

discuss the atomic data error correction in the next section.

Figure 1.12 compares the DEM reconstruction results between a low smoothing

prior and a high smoothing prior. In the first plot of Figure 1.12, the posterior
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intervals at several temperature points do not include the posterior mode values.

This is not due to a mistake in our algorithm but due to the slow convergence of the

DEM parameters on the region where the ratio of missing data to observed data

is too large. Consequently, the EM estimates stop before they reach the modes ac-

cording to the stopping criteria and our MCMC run is not long enough to produce

reliable confidence intervals. This is no longer a problem when we use strong

smoothing prior as shown in the second plot of Figure 1.12. The narrow confi-

dence interval around provides a strong evidence of the existence of

the sharp peak at . Recent works (Ness et al. (2001), Argiroffi et al.

(2003)) report the results obtained from the analysis of the high resolution spectra

of Capella gathered with Chandra and showed similar results that there is a peak

around . In addition, the result shows a strong evidence of the second

mode around . The temperature region,

where the DEM estimates behave poorly under the low smoothing, shows the

consistency between the EM and MCMC results nicely under the high smoothing.

Note that this region also corresponds to the temperatures with very low column

sums in the emissivity matrix. Especially, the flat DEM on results

mainly from the smoothing prior distribution rather than from the information in

the data.

We summarized estimates for the elemental abundances in Table 1.4. The table

corresponds to the second plot in Figure 1.12. Like the DEM reconstruction re-

sults, the EM and MCMC outputs for abundances are consistent under the high

smoothing.

1.6.3 Model Checking

Model diagnostics are an important part of any model-based statistical analysis,

and especially so in the context of complex models of the sort described in our pa-
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Figure 1.12: Comparisons of Error Bars for the Fitted DEM of Capella from Chan-
dra Data between Different Smoothing Strategy.
The plot draws DEM in log scale. In the top plot, the solid line is the poste-
rior mode of the DEM computed by EM algorithm and the shaded area repre-
sents component-wise 95% posterior intervals under low smoothing (

). In the second plot, the solid line is the posterior mode of
the DEM computed by EM algorithm and the shaded area represents component-
wise 95% posterior intervals under high smoothing (

). Wavelength correction are used for both results.
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Element Mode Mean 95% Interval
C 0.155 0.149 (0.097, 0.205)
Si 0.266 0.255 (0.227, 0.286)
N 0.122 0.118 (0.110, 0.126)
S 0.300 0.293 (0.273, 0.315)
O 0.542 0.533 (0.492, 0.577)
Ar 0.235 0.251 (0.025, 0.555)
Ne 0.599 0.591 (0.540, 0.644)
Ca 0.362 0.356 (0.206, 0.517)
Mg 0.177 0.168 (0.085, 0.256)
Fe 0.303 0.295 (0.190, 0.405)
Al 0.428 0.422 (0.403, 0.442)
Ni 0.707 0.688 (0.616, 0.767)

Table 1.4: Posterior Mean, Mode and the 95% Posterior Interval for Element Abun-
dance of Capella Using Chandra Data Set.
The wavelength correction and the strong smoothing corresponding to the second
plot in Figure 1.12 are used. The table corresponds to the second plot in Figure 1.12.

per. Ideally such diagnostics should investigate both internal consistency and ob-

jective outside evaluation of the results. Outside evaluations might compare pre-

dictions under the model with data not used to fit the model as in cross-validations

or when comparable data is available from other sources. In a Bayesian data anal-

ysis, internal consistency is often investigated by comparing the observed data

with the posterior predictive distribution. Gelman et al. (1996) describe how one

can quantify and assess discrepancies between the two. Such posterior predictive

checks are a standard component of our methodology for the parameterized spec-

tral analysis described in Section 1.2.3. (See van Dyk and Kang (2004) and van Dyk

and Park (2004) for more details in the context of spectral analysis.) We will show

how the posterior predictive distribution can be used to assess the magnitude of

the inherently heteroskedastic residuals under Poisson models.

The models for DEM reconstruction described in Sections 1.2.3 and 1.3 rely more

heavily on blurring matrices (the emissivity matrix and line-spread, respectively)

than does the parametric spectral model. Thus, we expect our results to be more

sensitive to misspecification of these matrices. To explore this, we generated sev-
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eral replicate data sets from the posterior predictive distribution under the DEM

reconstruction model. Five replicate data sets are compared with the observed

Capella data in Figure 1.13. The basic structures and line locations of the the five

replicate data sets appear to be very similar to those of the observed data. Thus, in

general terms our model seems appropriate for the data.

A higher resolution diagnostic can be constructed by looking at a residual plot.

Figure 1.15 plots the difference between the observed count in each channel and

the expected count under the model evaluated at the posterior mean of the model

parameters. The heteroskedastic nature of the residuals is evident. To assess the

magnitude of the residuals, we sampled 1000 replicate data sets from the posterior

predictive distribution. We used the replicates to construct 95% Monte Carlo pre-

diction intervals for each of the channel count. The vertical range of the shaded

area corresponding to each channel in Figure 1.15 represents the prediction inter-

val for that channel. Ideally, we would expect about 5% of the observed counts

to fall outside the shaded area. Unfortunately, the plot indicates that the residuals

tend to be more dispersed than we would expect under the model: about 15% of

the observed counts fall outside the shaded area.

The most likely explanation for this lack of fit is that the precision of the emissivity

matrix is inadequate. Indeed, it is well known that this matrix is recorded with er-

ror. In an attempt to quantify the extent of the error, error bars are computed on the

elements of the matrix. (See the Atomic Database (ATOMDB).) Unfortunately, it is

also known that the errors in the matrix are highly correlated and these correlations

are not readily available. Nonetheless, we have made some progress in accounting

for imprecisions in the emissivity matrix by fitting the location (in wavelength) of

some of the stronger spectral lines. (See Section 1.5.) The emissivity matrix pro-

vides a strong prior distribution for these locations and the data provides enough

information to tweak the locations enough to improve the fit. This innovation to

the model was inspired by residual plots of the sort illustrated in Figure 1.14 and
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Figure 1.13: Comparing the Posterior Predictive Distribution with the Observed
Capella Data.
The first panel shows the observed X-ray photon count data for Capella. The re-
maining five panels illustrate replicate data sets sampled from the posterior pre-
dictive distribution under a DEM reconstruction model. The basic structures and
line locations of the the five replicate data sets appear to be very similar to those of
the observed data.
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Figure 1.14: Residual Plots With and Without ATOMDB Error Correction for the
Reconstructed DEM of Capella.
We plot the difference between the observed channel counts and the expected
count under the model evaluated at the MAP estimates from EM output with and
without correcting the wavelength error at ATOMDB. -axis values are standard-

ized error with Poisson variance: , where is the MAP estimates. Due to

over-dispersion and errors in the emissivity matrices, much more than 5% of the
residuals are greater than +2 or less than -2. Note that the range of the -axis is
the same for both plots for comparisons. Big negative residuals and big positive
residuals immediately after that around 93 area suggest that there is a mismatch
between the measured wavelength grid and the expected locations of the lines.
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Figure 1.15: Residual Plot for the Reconstructed DEM of Capella.
We plot the difference between the observed channel counts and the expected
count under the model evaluated at the posterior mean of the model parameter
as a function of channel wavelength. These residuals are compared with the pos-
terior predictive variability of the channel counts. The vertical range of the shaded
area corresponds to 95% Monte Carlo prediction intervals for each of the channel
counts. Ideally, we would expect about 5% of the observed counts to fall outside
the shaded area. That about 15% of the counts fall outside the shaded area indi-
cates that the model does not fully account for the observed variability in the data.
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Figure 1.16: Emission Line Position Shift Due to Atomic Error.
This plots the differences between the fitted line locations and theoretical line lo-
cations ((fitted-theoretical) vs. (theoretical)) for 30 strong emission lines in the data
range of interest from Chandra data and EUVE data.

1.15.

Figure 1.14 plots the difference between the observed channel counts and the

expected count under the model evaluated at the MAP estimates of the model

parameters from EM output with or without correcting the wavelength error at

ATOMDB. It is evident that the fit improves with the wavelength error correction

and suggests that more precise atomic database should be built. See Figure 1.16

for the differences between the fitted line locations and theoretical line locations.

Judging from Figure 1.15 and Figure 1.14, there is still room for improvement in

our models ability to account for the variability in the observed photon counts.

There are two basic strategies for accomplishing this improvement. First, we can

attempt to further model uncertainties in the emissivity matrix (or elsewhere in the

model) by including additional free parameters perhaps with highly informative

prior distributions. We expect that adding flexibility to the model in this way also

adds variability to the predictive distributions. The second strategy is to add an

omnibus over-dispersion component to the model. Our colleagues in astronomy

have a strong preference for the former strategy because it fosters understanding

of the physical processes that give rise to the data. Although our primary goal is to
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reconstruct the DEM, the emissivity matrix is of interest in and of itself. If we are

able to pin down the emissivity matrix or any physical component of the model by

reconstructing the DEM, this would be an important scientific contribution.

Nonetheless, in light of the over-dispersed residuals, allowing for over-dispersion

in the data seems a reasonable strategy. A standard conjugate strategy for Poisson

models is to mix the Poisson parameter over its conjugate prior gamma distribu-

tion. If the gamma parameters are viewed as model parameters to be fit to the

data, this strategy replaces the one parameter Poisson sampling distribution with

a two parameter negative binomial sampling distribution. In our case, we have

multiple conditionally independent Poisson distributions that we parameterize in

terms of nested binomial or multinomial distributions. The probability parameters

are in turn modeled using conjugate beta distributions. We impose structure on the

parameters of the conjugate distributions in order to favor smooth reconstructions.

1.7 Discussion

We developed a novel Bayesian DEM reconstruction method based on hierarchi-

cal missing data structuring and data augmentation method. We demonstrated

the robustness of our method using simulations, and we showed the consistency

of the DEM structure between our results and the other previous results. Some

previous methods took a non-parametric approach by fitting algebraic polynomi-

als or splines to a set of measured line fluxes, whereas our method is completely

probabilistic and imposes no pre-specified structure on the DEM except for the

multi-scale smoothing method by use of prior distribution. Kashyap and Drake

(1998) was the first to use MCMC and derived point estimates at different tem-

peratures, but their method is limited to measured fluxes in lines or integrated

passband. However, our method uses the full detailed emissivity matrix to do a

global fit to the spectrum. Consequently, it is flexible to handle atomic data errors
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(errors in wavelength, ion balance, emissivities, missing lines, etc.), and easier to

incorporate prior distribution such as multiscale smoothing.

Future works includes more of the correction of the atomic data errors. The main

source of missing lines in current emissivity database tables is the absence of di-

electronic recombination (DR) lines associated with weaker resonance lines. It is

believed that such lines can be guessed from the structure of the strong resonance

lines. We believe that our method can also serve as a tool for finding other atomic

errors and improving the ATOMDB for future high-energy research for astrophysi-

cists.

We would like to thank Professor Loh, Professor Gelman and Dr. Brickhouse for

their thoughtful comments and discussions.
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Appendix

Missing Data Distributions Conditional on Model Pa-
rameters

We describe the conditional distributions of the higher level of missing data given

the lower level of missing data and the model parameters.

1. Independently separate the background counts from the observed counts:

2. Restore the blurred photons:

3. Independently restore the absorbed counts due to the effective area:

4. Restore given :

5. Independently restore the censored temperature counts:

6. Restore the element counts from the augmented energy counts:

where is the -th column of .
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Incorporating Genotyping Uncertainty in Haplotype
Inference for Single-Nucleotide Polymorphisms

Abstract

The accuracy of the genotypic information generated by high-throughput geno-

typing technologies is crucial in haplotype analysis and linkage-disequilibrium

mapping for complex diseases. To date, most automated programs lack quality

measures for the allele calls; therefore, human interventions, which are both labor

intensive and error prone, have to be performed. Here, we propose a novel geno-

type clustering algorithm based on a bivariate -mixture model, which assigns a set

of probabilities for each data point belonging to the candidate genotype clusters.

Furthermore, we describe an expectation-maximization (EM) algorithm for haplo-

type phasing, which can use probabilistic multi-locus genotype matrices as inputs.

Combining these two model-based algorithms, we can perform haplotype infer-

ence directly on raw readouts from a genotyping machine, such as the TaqMan

assay. By using both simulated and real data sets, we demonstrate the advantages

of our probabilistic approach over the current genotype scoring methods, in terms

of both the accuracy of haplotype inference and the statistical power of haplotype-

based association analysis.



2.0 Preface

This paper is a joint work with Zhaohui S. Qin, Department of Biostatistics, School

of Public Health, University of Michigan, Ann Arbor, Tianhua Niu, Division of

Preventive Medicine, Department of Medicine, Brigham and Women s Hospital,

Harvard Medical School, Boston, and Jun S. Liu, Department of Statistics, Harvard

University, Cambridge, MA. The related work to this paper is published in Kang

et al. (2004).

2.1 Introduction

A Single Nucleotide Polymorphism or SNP is a DNA sequence variation, occur-

ring when a single nucleotide (adenine (A), thymine (T), cytosine (C) or guanine

(G)) in the genome is altered. Since, SNPs make up 90% of all human genetic vari-

ations, they have been widely used in genetics for disease association studies and

linkage-disequilibrium (LD) mapping. Haplotype is a set of DNA polymorphism

markers physically located on a single chromosome. Haplotype analysis pro-

vides greater statistical power than a single marker analysis, therefore, haplotype

reconstruction based on SNP genotype data has become a very important task.

However, direct laboratory haplotyping assays are expensive and low-throughput

(Michalatos-Beloin et al., 1996), and it is necessary to develop a high-throughput

automatized genotyping and haplotyping method.

Current high-throughput genotyping technologies such as the 5 nuclease assay

(TaqMan), oligonucleotide ligation assay (OLA) and Sequenom’s matrix assisted

laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry assay

give genotype information on each marker for each individual. However, these

methods are prone to errors due to the experimental artifact and the misjudgment

on the genotype scoring when genotype clusters are not sufficiently separated. In
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that case, genotype scoring is usually performed manually or by inferior clustering

methods such as the -means algorithm (Hartigan and Wong, 1979). In section 2.2,

we propose a powerful and flexible clustering method using the mixture of bivari-

ate t-distributions. This algorithm avoids the error-prone deterministic calling,

and instead, it calculates the probability for a marker to be a certain genotype,

which, in turn is used to generate probabilistic multi-locus genotype matrices. We

also compare the new clustering algorithm to the conventional -means algorithm

and

An array of in silico haplotype inference algorithms given genotype information

have been developed and improved over the past decade in terms of the accu-

racy and speed of the algorithms. (See Clark (1990), Excoffier and Slatkin (1995),

Hawley and Kidd (1995), Long et al. (1995), Stephens et al. (2001), Niu et al. (2002),

Lin et al. (2002), Qin et al. (2002).) Stephens and Donnelly (2003) is a good review

article in the literature. Several recent studies have demonstrated that even the

slightest amount of genotyping error can lead to serious consequences with regard

to haplotype reconstruction and frequency estimation (Kirk and Cardon, 2002). In

section 2.3, we present a new haplotype inference method for unrelated individu-

als which takes the probabilistic multilocus genotype matrices computed from the

clustering methods introduced in section 2.2 as inputs for accurate estimation.

In section 2.5, we illustrate the advantages of the new algorithm by various simu-

lation studies and apply the new method to real-data example.

2.2 Genotype Scoring

For fluorescence-based genotyping assays such as TaqMan and OLA, the reactions

are assessed by a fluorescent reader. The two different alleles are labeled with two

different dyes. For each dye used, the reader produces a fluorescent intensity (FI)
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value. Each pair of FI readouts, denoted as , forms a point on

the scatter plot (Figure 2.1) indicating the quantitative intensities of the two SNP

alleles for a given individual.

As depicted in Figure 2.2.A, a typical SNP scatter plot normally has four distinct

clusters (or “groups”), representing the “no fluorescence signal” (NFS) cluster,

“wild-type allele homozygote” (AA) cluster, the heterozygote (Aa) cluster, and

“the variant allele homozygote” (aa) cluster. The NFS cluster is always located

in the lower left corner close to the origin, the AA, aa, and Aa clusters in the up-

per left, lower right, and upper right corners, respectively (Figure 2.2.A). Ideally,

if the NFS, AA, Aa, and aa clusters have distinct boundaries, and visual inspec-

tion is sufficient to make the genotype call (e.g. Figure 2.1.A). However, due to

various artifacts, segregation can be poor with points lying between groups (e.g.

Figure 2.1.B), which often results in ambiguous genotype calls.

When the genotype clusters do not segregate sufficiently from each other (Fig-

ure 2.2.B, medium- and high-ambiguity cases), one manually makes deterministic

calls such that any data point is assigned to the visually closest cluster. The -

means algorithm has been widely used as an alternative to the manual clustering.

We will discuss the disadvantages with -means algorithm in section 2.2.2. To

make quantitative genotype calls, we compute the probability that a data point be-

longs to each cluster. Probabilistic scoring is particularly attractive when genotype

clusters are not well segregated.

2.2.1 A Fast-Convergent Clustering Algorithm based on the -
Mixture Model

This new clustering algorithm uses a mixture of four bivariate -distributions to fit

the observed pairs of FI readouts, where the four distributions represent clusters

of heterozygotes, major allele homozygotes, minor allele homozygotes, and NFS,
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Figure 2.1: Scatterplots of FI Readouts from Genotyping Markers by Use of Various
Assays.
Each point represents the genotype of an individual, where x and y denote
the FI values for the two alleles, respectively. ( ), A typical good result from the
TaqMan assay. Four distinct clusters are shown, corresponding to major-allele ho-
mozygotes, minor-allele homozygotes, heterozygotes, and NFS. ( ), A typical but
not ideal result from the TaqMan assay. It is difficult to separate all points into dis-
tinct clusters. The point in a circle is located between two groups of dense points,
demonstrating the case in which a clear-cut genotype call is difficult to make. ( ),
A typical good result from the OLA. The three genotype clusters are in the form
of three straight lines: the one close to the -axis and the one close to the -axis
correspond to major and minor homozygotes respectively, and the center line cor-
responds to heterozygotes. The points near the origin indicate experimental fail-
ures, resulting in NFS. ( ), A typical but not ideal result from the OLA. The points
located between line patterns demonstrate the cases in which a clear-cut genotype
call is difficult to make. ( ), A typical good result from the MassARRAY assay. The
scatterplot looks similar to the ones obtained from the OLA. ( ), A typical but not
ideal result from the MassARRAY assay. The points that are located between the
genotype line patterns are the cases in which a clear-cut genotype call is difficult
to make.
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Figure 2.2: Illustration of the Genotype Clusters and their Ambiguity Levels on
2-D Fluorescent
’A’ represents wild-type allele and ’a’ represents variant allele. ’AA’, ’Aa’ and ’aa’
represent wild-type allele homozygote, the heterozygote, and the variant allele
homozygote, respectively. , , and represent the angle between the -
axis and the three clusters. Plots in the second row illustrate the the simulated FI
scatterplots at low, medium, and high ambiguity levels.
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respectively. We chose -distribution instead of popular Gaussian distribution, be-

cause the -distribution has a heavier tail than the Gaussian distribution, hence

the -mixture model is less sensitive to the outlying points and more robust than a

Gaussian mixture model. Note that the Gaussian mixture model can be viewed as

a -mixture model with infinite degrees of freedom. Although -distributions have

various desired properties, they have not been broadly used in practice because of

the computational difficulties in parameter estimation.

The clustering algorithm is based on typical Gibbs sampling framework, which

samples parameters given missing data and missing data given the parameters

and iterates. The missing data are the cluster indexes and the parameters are the lo-

cation, the scale and the weight of the t-distributions. For fast convergence, we ap-

ply parameter-expanded data augmentation(PXDA) algorithm (Liu and Wu, 1999)

when sampling the paramters of t-distributions given the missing cluster index.

After the convergence, we use the mean of the sampled values for estimating -

distributions to compute the likelihood values required by our probabilistic allele-

calling scheme. Note that we can also use the -mixture clustering algorithm to

make deterministic calls by assigning individuals to their most probable clusters

(i.e., the ones with the highest posterior probabilities).

Clustering Model

The likelihood function of the bivariate -mixture model is

where is the set of observed pairs of FI values for

a SNP location, is the number of mixture components, the ’s are the mixture

weights (i.e., 0 for all and ), and is the

probability density function of the bivariate -distribution with location parameter
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, scale parameter , and known degrees of freedom . Since the choice of is not

critical to the analysis, we set as a default choice. In practice, lower value of

degrees of freedom is especially desirable when there are many ambiguous points

in the scatter plot the FI values. The number of mixture components is fixed at 4

to represent four clusters: AA, Aa, aa, and NFS. See Figure 2.2.B.

Our algorithm iterates the following two steps and outputs Markov chain sam-

ples of the model parameters and the cluster indicator (for each individual) from

the desired posterior distribution. First, given current values of the parameters,

and for , for , we sample the unobserved mixture indicator

for each from , where is

equal to one if is assigned to -th cluster and zero otherwise, and

the probability that belongs to -th cluster at the -th iteration. Second, given

the current mixture indicator, , we sample the parameters,

and for , for from their posterior distribution.

Note that given the mixture index, model fitting is straightforward because the

parameters follow a series of standard distributions. We assume the natural con-

jugate proper prior on the mixture weights,

which result in the conjugate posterior distribution

For each cluster, given that we know which cluster each point belongs to from ,

the sampling of is equivalent to fitting a multivariate -distribution,
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which can be achieved efficiently using a parameter-expanded data augmentation

(PXDA) scheme (Liu and Wu (1999), van Dyk and Meng (2001)) shown at the next

section.

Parameter-Expanded Data Augmentation(PXDA) for Multivariate -distribution

To illustrate the PXDA scheme, we let denote the -dimensional -

distribution with center , covariance matrix , and known degrees of freedom

. Note the fact that is equivalent to

The auxiliary scale parameter is incorporated here in order to derive a fast-

converging Gibbs sampling algorithm. To avoid an improper posterior distribu-

tion, we use the conjugate prior distribution for , which can be parameterized

in terms of hyperparameters ,

Jointly, we have a prior distribution:

According to Liu and Wu (1999), we used Jeffreys’ prior for the auxiliary variable.

Under this prior specification, we obtain the following iterative sampling scheme:

Draw

independently for
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Draw

and where denotes the Wishart distribution

with scale matrix and degrees of freedom .

Draw , where .

Liu and Wu (1999) showed that the scheme converges to the correct posterior dis-

tribution for , although the posterior distribution of is still improper. They

also proved that the PXDA converges faster than the standard data augmentation

scheme and attains the optimal convergence speed when Jeffrey’s prior on is

used.

Stabilizing the -mixture Clustering Algorithm

Some difficulties in mixture modeling include the label switching problem

(Stephens, 2000), the incorrect specification of the cluster numbers, and the oc-

currences of clusters of small sizes. To make the algorithm stable, we use our prior

knowledge of the well-known structure of the FI value scatter plot. First, we use

proper priors for the parameter and . They prevent the posterior distribu-

tion from being improper even when the data set has an empty cluster. We let

the prior distribution of conditional on be , where can be

either input by the user or defaulted at one of the four “corners” of the data scat-

terplot, and can be chosen by the user (default at 1). The prior for is taken as

, where is the sample covariance matrix based on all the

FI values, and , where is the dimension of the data point. Second, we
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impose an identifiability constraint on the parameter space of . Since the general

pattern of the scatterplot of FI values contains three clusters away from the origin

and one close to the origin, we impose a constraint such that , AA,

Aa, and aa, and denotes the distance from the origin to the vector. Further-

more, for non-NFS clusters, we impose another constraint that

(Figure 2.2), where is the angle of between the vector and the -axis. The

subscripts indicate the heterozygote cluster (Aa), the homozygote cluster near the

x-axis (aa), and the homozygote cluster near the y-axis (AA), respectively.

After the Markov chain of the above posterior sampling scheme has converged,

we estimate the likelihood for the -th individual’s FI values at this marker, given

that it is in cluster by , where and are posterior means

for the location and scale parameter of the cluster ’ ’. The reason for using only

this value instead of the cluster membership posterior probability is because of the

need of computing in the new EM algorithm proposed in section 2.3.2.

We also compute the posterior mean of the mixture weights, to compute the

cluster membership posterior probabilities for deterministic calls. We repeat this

process for all the SNP markers to obtain the multilocus genotype matrix of the

-th individual:
SNP1 SNP2

where is the probability that the genotype of the -th SNP of individual equals

to .

2.2.2 Comparing the -means and the -mixture Model for Geno-
type Scoring

We compared the accuracies of the -means algorithm and the -mixture model

under low, medium, and high ambiguity levels. The ambiguity level is con-
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trolled by changing the correlation coefficient of the covariance matrix, such

that 0.9, 0.75, and 0.6 correspond to low, medium, and high ambiguity levels,

respectively. To reduce the complexity of the simulation study, we focused on a

three-cluster model without the NFS cluster for the FI outputs. In our simulation,

bivariate Gaussian distributions were used to generate 100 FI data points with

fixed location parameters of the distributions for AA, Aa and aa clusters at those

estimated from a true dataset and the scale parameters depending on the ambi-

guity level (we also used t-distributions for simulating the FI scatter plots and the

results were similar). We clustered all the 100 points using both the -means algo-

rithm and the -mixture model. The -means algorithm was implemented using

the -means function in software package R v.1.5.0. We also implemented the -

means algorithm using Splus v.5.1 and found that the results were comparable to

the R implementation.

To make a fair comparison, we assumed that the number of clusters was three and

we gave the same starting points for the centers of clusters for both algorithms.

In the -mixture model, we picked the cluster with the highest probability. We

counted the number of erroneous calls (defined as the calls different from the true

calls) in each simulation and repeated this procedure 100 times. At every ambi-

guity level, the -mixture model outperformed the -means algorithm (Table 2.1)

by a large margin. One of the reasons for the poor performance of the -means

method is that it had difficulty accommodating the elongated shapes of the FI clus-

ters because of its use of the standard Euclidean distance. In contrast, the mixture

t-model can utilize the shape information by updating the covariance matrix of its

each component.

Besides its poor performance, the -means algorithm also requires correct specifi-

cation of the number of clusters, which requires the human judgment of eyeballing

the scatter plot to determine the proper number of clusters before running the pro-

gram. In contrast, the -mixture model is not sensitive to the input cluster number
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Miscalls (%) for Scenario
Algorithm Low Medium High

Ambiguity Ambiguity Ambiguity
-means 9.59 8.82 8.82

-mixture 0.03 0.30 0.72

Table 2.1: Comparison of Clustering Accuracy between the -means Algorithm
and the -mixture Model in Making Deterministic Genotype Calls.
For comparison purposes, we generated 100 data sets for each of low, medium, or
high ambiguity scenarios. In each data set, the Gaussian mixture model was used
in generating 100 data points forming three genotype clusters. For each algorithm,
the percentage of miscalls was defined as (the number of miscalls) / (total
genotype calls).

as long as it matches or exceeds the true number (at most 4 in this case). The use

of informative priors ensures that the -mixture model is not sensitive to empty

clusters. Examples of obvious mistakes made by the -means algorithm in the

clustering are shown in Figure 2.3.

2.3 Haplotype Phasing Methods

2.3.1 Conventional EM with Deterministic Inputs (EM-I)

For deterministic inputs for multiple linked SNPs, the conventional EM algorithm

has been applied successfully both to construct individual haplotype phases and

to estimate population haplotype frequencies from deterministic multi-locus geno-

type data due to its stable convergence (Excoffier and Slatkin (1995), Hawley and

Kidd (1995), Long et al. (1995), Niu et al. (2002), Qin et al. (2002)).

Let denote the genotypes of a sample with individuals, let

denote the unobserved haplotype configuration, where

represents the haplotype pairs for the -th individual, and let de-

note the population haplotype frequencies, where is the total number of existing

haplotypes. In data augmentation framework, ’s are missing data, and is pa-
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Figure 2.3: Comparisons of the -means Algorithm and the t-mixture Algorithm.
Each point represents the genotype of an individual, where and denote
the FI values for the two alleles, respectively. The cluster label is shown for each
data point for the ground truth, as well as clustering results of the bivariate -
mixture model (t-mix), and the -means algorithm. Three plots in the first row
illustrate three-cluster example; and the other four plots in the second and third
row illustrate a two-cluster example. Note that the -means algorithm requires
the user to pre-specify the number of clusters, whereas the t-mixture algorithm
can determine the number of clusters automatically. In both examples, the perfor-
mance of -mixture clustering is superior to the -means algorithm.
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rameter. We use the notation to denote that the two haplotypes are

compatible with genotype . The likelihood function can be written as:

If we observed the missing phase configuration , the maximum-likelihood esti-

mate (MLE) of should satisfy , where is the count of occurrence of

haplotype in a particular phase configuration (M-step). Then, we replace

with , where represents to expected value over under the distribu-

tion (E-step). With denoting the frequency estimation at the -th

iteration, the EM iterates as:

where denotes the complement haplotype that pairs with to make up the

genotype and is an indicator function. Given the final estimate , we phase the -th

individual’s genotype by finding a compatible haplotype pair

that maximizes .

2.3.2 An EM Algorithm with Probabilistic Inputs (EM-II)

For probabilistic inputs of multiple linked SNPs such as those resulting from the

-mixture algorithm, the conventional method (EM-I) can no longer be applied.

Here, we introduce a new EM algorithm, which can handle such inputs. Let ,

, and be the likelihood of the -th individual’s FI readouts at marker given

that its genotype at this marker is heterozygote (Aa, denoted by ’0’), wild-type

homozygote (AA, denoted by ’1’), and variant homozygote (aa, denoted by ’2’),

respectively. That is, , where represents

the FI values of the -th SNP of the ith individual, represents the genotype at the

-th SNP, and is the density function of the bivariate -distribution,
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with mean , scale , and known degrees of freedom , for cluster ’ ’ ( =0,1,2)

at the th SNP. Note the distinction between the likelihood of the FI values given

a cluster, , and the posterior cluster (membership) probability,

, where is the mixture weight for cluster .

These likelihood vectors for both markers form a matrix:

SNP1 SNP2

where is the total number of markers in consideration. From this matrix, we can

obtain the likelihood of any -SNP genotype of this individual by multiplying the

corresponding single-marker genotype likelihoods under the assumption that the

SNPs’ FI readouts are mutually independent. For example, the likelihood for a

3-SNP genotype is:

where represents the FI values of the -th individual, and and are the

estimated location and scale parameters of cluster ’ ’ at the -th SNP. Note that

this equation is an approximation because the estimated (as opposed to the true

but unknown) values of the location and scale parameters are used. We order all

m-SNP genotypes of the -th individual as , with their associated like-

lihoods , and generate the list of the possible genotype for individual

, ...
...

, where is the number of possible genotypes for the

-th individual, i.e., those with . Although there are a total of possible

genotypes for closely linked bi-allelic SNP markers, we usually only need to list

a small number of the genotypes with non-zero likelihood values.
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As in typical data augmentation algorithms, we treat as observed data,

phase configuration as missing data, and the population haplotype frequencies

as parameter. The likelihood function for haplotype frequencies can be com-

puted as:

From this expression, we are able to obtain the following EM iteration for :

where denotes the complement haplotype that pairs with to make up the

genotype . Note that the EM-I algorithm is a special case of the EM-II with

. The -th individual’s genotype is phased given the final estimate by

finding a compatible haplotype pair that maximizes .

2.4 Three Phasing Strategies Based on Raw FI Values

Three phasing strategies (denoted as ”SCHEME 1”, ”SCHEME 2”, and ”SCHEME 3”)

have been used in our study (illustrated in Figure 2.4):

SCHEME 1 : clustering step uses the -mixture model; phasing step uses EM-I al-

gorithm;
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Figure 2.4: Schematic Diagram for Strategies SCHEME 1, SCHEME 2, and SCHEME 3.
Each strategy consists of two steps: a clustering step and a phasing step. For each strategy, the raw FI scatter data were
used and both individual phasing and haplotype frequency estimation were achieved. SCHEME 3, mimics the human
“best guess” strategy. SCHEME 1, and SCHEME 3, output deterministic calls, and S2 outputs probabilistic genotype calls.
The new algorithms introduced in this paper were in bold face.
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SCHEME 2 : clustering step uses the -mixture model; phasing step uses EM-II

algorithm;

SCHEME 3 : clustering step uses the -mixture model with a removal of ambiguous

points; phasing step uses EM-I algorithm.

SCHEME 1 uses the -mixture model in the clustering step to make deterministic

calls (assigning each individual to its most probable cluster) and uses the EM-I

algorithm in the phasing step. For example, for a data point with cluster probabil-

ities 0.51, 0.48, and 0.01 of belonging to the AA, Aa, and aa clusters, respectively,

SCHEME 1 will still deterministically assign it to the AA cluster. Although the -

means algorithm can also be applied in the clustering step, we observed that the

results obtained by the -means algorithm were much worse than those based on

the -mixture model in our simulation comparisons (see Table 2.1). We thus drop

the -means algorithm from subsequent analyses. SCHEME 2 uses the -mixture

model in the clustering step in making probabilistic calls and uses EM-II in the

following phasing step. SCHEME 3 is essentially the same as SCHEME 1, except

that it attempts to simulate the human ”best guess” strategy commonly practiced

by laboratory technicians: when a data point cannot be assigned with a consensus

call by two independent readers, it will be removed. Here, we assume that the

independent human readers will not be able to make consensus calls for all am-

biguous data points (i.e., a SNP with all the cluster probability values can

not be assigned to any of the AA, Aa, or aa genotype clusters.). Thus, all such am-

biguous data points of the raw FI data will be removed at this step and not used

in the phasing step. For example, for a data point with cluster probabilities 0.51,

0.48, and 0.01 of belonging to the AA, Aa, and aa clusters, respectively, SCHEME 3

will toss it away. However, for a data point with cluster probabilities 0.045, 0.91,

and 0.045 of belonging to the AA, Aa, and aa clusters, respectively, SCHEME 3 will

assign it to the Aa cluster.
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2.5 Results

2.5.1 Simulation Studies

Accuracy Comparison of the Three Phasing Strategies

We compare the accuracies of the haplotype phase and frequency reconstruction

of SCHEME 1, SCHEME 2, and SCHEME 3 by simulation study.

Only two SNPs are considered for demonstration purposes, and both SNPs are as-

sumed to have the same allele frequency distributions (three different minor allele

frequencies were used: 0.1, 0.3, and 0.5), and haplotype frequencies are generated

in such a way that low, medium and high LDs are found between the two markers

( (Lewontin, 1964) ranges from 0 to 0.5; 0.5 to 0.75; and 0.75 to 0.95). Accord-

ing to the haplotype frequencies, 200 haplotypes are generated and we randomly

pair them to generate 100 individuals’ genotype. Given the genotype, we generate

the FI-values for each SNP with three different levels of ambiguity. The ambiguity

level is controlled by changing the correlation coefficient of the variance matrix

of the -distribution, such that 0.9, 0.75, and 0.6 correspond to low, medium,

and high ambiguity levels, respectively. (Figure 2.2.B). For all the markers, we use

, , and , for the location parameter and

and for the scale pa-

rameter of the -distribution for each cluster, where is determined by the level

of ambiguity, . These values are based on those estimated from a real dataset in

the XRCC1 gene study. Note that we do not include the NFS cluster when simu-

lating the FI values. This is a legitimate assumption because in real experiments,

most NFS points result from empty DNA samples that are artificially added for

experimental convenience to serve as a negative control.

Overall, we have the 27 different cases (3 ambiguity levels 3 allele frequencies
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3 LD levels) and each of the 27 cases repeats 100 times generating the set of 2-SNP

FI-values of 100 individuals.

For frequency estimates, we used the following discrepancy measure (Excoffier

and Slatkin (1995), Stephens et al. (2001)): , where de-

notes the total number of existing haplotypes and , and denote the true

haplotype frequency and the estimated haplotype frequency, respectively. The re-

sults are presented in Figure 2.5. At low ambiguity level, all three strategies per-

form similarly. At medium and high ambiguity levels, SCHEME 2 outperforms

both SCHEME 1 and SCHEME 3. As we expected, SCHEME 2 was especially ad-

vantageous in high LD cases. For the phasing of each individual’s haplotypes,

SCHEME 1 and SCHEME 2 showed comparable accuracies, although in the case of

high LD, SCHEME 2 outperformed SCHEME 1 slightly. This is consistent with the

result from the frequency estimate. Both SCHEME 1 and SCHEME 2 were much

more robust than SCHEME 3 in the high ambiguity case.

Power Comparison of the Three Phasing Strategies

To find out whether the power of detecting the disease-related haplotype in these

tests can be enhanced by considering genotyping uncertainties, we conducted the

following haplotype-based case-control association tests. Suppose that the hap-

lotypes consist of two linked SNP markers which are associated with the disease

(denoted as SNP-1 with alleles A and a, and SNP-2 with alleles B and b). The four

haplotypes are: AB, Ab, aB and ab, with haplotype frequencies: , and

, respectively, which satisfies . For the hypothetical

case-control study, we considered three different models in our simulation exper-

iment with the frequencies listed as: . These models are (1) case

group: 0.4, 0.3, 0.2, 0.1; control group: 0.25, 0.25, 0.25, 0.25; (2) case group, 0.4, 0.4,

0.1, 0.1; control group: 0.25, 0.25, 0.25, 0.25; and (3) case group: 0.4, 0.3, 0.2, 0.1;
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Figure 2.5: Performance Comparison of Haplotype Frequency Estimations of the Three Strategies

The vertical axis measures discrepancy the scaled absolute difference between the estimated

and the true haplotype frequencies. The error bars are shown as standard error. S1, S2, and S3 represent competing
strategies shown in Figure 2.4, and “base” refers to the use of true genotype calls to feed in the EM-based haplotype
phasing algorithms. A total of 100 data sets were generated for each calculation, and each simulated data set contained
100 individuals. Left bar, low LD ( ranges from 0 to 0.5); Middle bar, medium LD ( ranges from 0.5 to 0.75); Right
bar, high LD ( ranges from 0.75 to 0.95). minor allele frequency.
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control group: 0.3, 0.2, 0.4, 0.3. The simulation proceeds as follows:

1. Simulate =100 haplotypes and randomly pair them to obtain 50 individ-

ual genotypes in each of the case and control populations according to each

group’s haplotype frequencies.

2. Pool all 100 individuals (50 cases + 50 controls) and generate their FI values

according to low, medium, and high ambiguity levels.

3. Cluster the 100 individuals using the -mixture model; obtain the estimated

cluster likelihoods , , and as well as the cluster posterior probabil-

ities for each individual and SNP.

4. Phase the 100 genotypes using strategies SCHEME 1, SCHEME 2, and

SCHEME 3 and count the number of times each of the four different hap-

lotypes appears in the case and control populations. Record counts in each

cell of the 2 (case/control) by 4 (AB/Ab/aB/ab) table. It is also possible to

use the expected haplotype counts as in the EM algorithm.

5. Compute the -test statistic for the 2 by 4 table.

6. Randomize to obtain the critical values:

(a) Assign individuals randomly into the control and case groups along

with their , , and values obtained in step 3. Redo steps 4-5

for this randomly permuted data set.

(b) Repeat step 6.(a) 500 times and obtain the 90th, 95th, and 99th per-

centiles of the test statistics, which serve as critical values for signifi-

cance levels 0.10, 0.05 and 0.01, respectively.

7. Record whether the null hypothesis is rejected or accepted by comparing the

test statistics of the original simulated data with the critical values from step

6.(b).
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8. Repeat steps 1-7 500 times.

9. Compute the power of the test, i.e., the proportion of times the test was re-

jected.

Although the test statistic would have an approximate (d.f.=3) distribution, if we

observed the haplotype counts, under the null hypothesis of no association in the

standard situation, we can not use this property here because the haplotype counts

in the table are not truly observed. Rather, these counts are estimated from the

genotype data, which introduces additional uncertainty and may inflate the type-I

error. As an alternative, we employed a randomization procedure to determine

the critical values for a given significant level, as detailed in step 6 above.

The results of power comparison in association test are presented in Table 2.2.

Models 1 and 2 assume that the two SNPs are in perfect linkage equilibrium

among the controls; whereas among the cases they are in strong LD (Model 2 had

a stronger LD than Model 1). Model 3 mimics a complex disease scenario when

the case and the control haplotype distributions differed only slightly. Overall,

the haplotype distribution differences are the greatest in Model 2. Thus, for each

method considered, the power was always the greatest in Model 2. As we ex-

pected, the test using the true genotypes as inputs for the haplotype phasing has

the largest power in every scenario, which is likely due to the fact that only phas-

ing uncertainty, but no clustering uncertainty, is present. In low ambiguity cases,

SCHEME 1, SCHEME 2, and SCHEME 3 yielded similar powers. In medium and

high ambiguity cases, it can be seen that SCHEME 1 and SCHEME 2 always outper-

formed SCHEME 3 due to the obvious reason that in SCHEME 3 one throws away

information (by removing ambiguous points). For Model 2, where the cases have a

significant LD compared to the controls, SCHEME 2 had the greatest power among

the three under all ambiguity and significance levels.
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Power(%)
Model Low Ambiguity Med. Ambiguity High Ambiguity
And Base S1 S2 S3 S1 S2 S3 S1 S2 S3

Model 1:
.10 55.6 55.2 56.2 55.4 55.2 56.8 51.4 57 58 54
.05 45 43.6 44 43.4 44.4 44 42.4 46.6 48.2 41
.01 29.2 29.8 29.6 30.4 29.4 29.4 25.6 30.4 28.4 24

Model 2:
.10 85.2 82.8 84.2 82.6 80.8 82 78.6 78.8 81 77.4
.05 75 73.2 74 72.4 72.2 73.4 70.8 68.6 71.2 67.2
.01 55.4 53 53.4 52.8 52.8 54.6 52.4 49.8 51.2 46.6

Model 3:
.10 71.8 68.2 68.8 67.4 67.4 68.4 64.4 64.2 65.2 60.2
.05 56.8 55 55.2 54.4 55.8 54.6 51.2 49 50 49.2
.01 32.6 31.4 32.2 29.8 30.2 28.6 25.6 26.8 26.4 26.2

Table 2.2: Comparison of Power to Detect Disease-Related Haplotype through Use
of Different Haplotype Inference Strategies under Various Disease Models and Dis-
ease Prevalences at Different Type I Error Rates.

= type I error. For the hypothetical case-control study, we considered three
different models in our simulation experiment with the frequencies listed as

. These models are (1) case group: 0.4, 0.3, 0.2, 0.1; control group:
0.25, 0.25, 0.25, 0.25; (2) case group, 0.4, 0.1, 0.1, 0.4; control group: 0.25, 0.25, 0.25,
0.25; and (3) case group: 0.4, 0.1, 0.2, 0.3; control group: 0.3, 0.1, 0.4, 0.2. S1, S2 and
S3 represent SCHEME 1, SCHEME 2, and SCHEME 3, respectively.
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2.5.2 A Real-Data Example

We applied SCHEME 1, SCHEME 2, and SCHEME 3 on a real genotype data set

of four SNPs (C26304T, C26602T, G28152A, and G36189A) located on the XRCC1

gene using TaqMan assay (Han et al., 2003) This data set results from a nested

case-control study of breast cancer within the Nurses’ Health Study. Among them,

the genotypes of 2,244 individuals (a mix of both cases and controls) were used

to derive the overall population haplotype frequencies. We applied SCHEME 1,

SCHEME 2 and SCHEME 3 on a subset of 315 subjects (including both cases and con-

trols). Haplotype inference was done using PLEM (Qin et al., 2002). A bootstrap-

like simulation study demonstrated that the haplotype frequencies estimated by

the PLEM in the overall sample (with 2,000) were very close to the ”truth”, and

we thus used this estimate as the ”benchmark.” All the results were summarized in

Table 2.3. The discrepancy rates ( ) for SCHEME 1, SCHEME 2, and SCHEME 3 were

0.03215, 0.0284, and 0.03215, respectively, indicating that SCHEME 2 performed bet-

ter than both SCHEME 1 and SCHEME 3 in this example.

2.6 Discussion

We developed a novel clustering algorithm based on the -mixture model for mak-

ing genotype calls. Using extensive simulations, we compared the performance of

this new algorithm with that of the -means algorithm. Our findings are in agree-

ment with those of Olivier et al. (2002), who found that -means algorithm often

placed two centroids within one group of data that would be assigned manually to

a single cluster (see Figure 2.3 for examples). As noted by Olivier et al. (2002), this

is particularly apparent when one of the homozygote clusters had only a few data

points. A reason why -means performed poorly is that the -means algorithm

cannot incorporate information on the approximate locations of the genotype clus-
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Strategy
Haplotype SCHEME 1 SCHEME 2 SCHEME 3 Benchmark

0000 0.1378 0.1377 0.1347 0.1347
0001 0.3905 0.3948 0.3917 0.3917
0010 0.3591 0.3592 0.3637 0.3637
0011 0.0044 0.0000 0.0000 0.0000
0100 0.0557 0.0557 0.0574 0.0574
1000 0.0513 0.0507 0.0505 0.0505
1001 0.0001 0.0001 0.0001 0.0001
1010 0.0012 0.0018 0.0019 0.0019

Table 2.3: Comparison of Haplotype Frequency Estimates Using SCHEME 1,
SCHEME 2 and SCHEME 3 for a Dataset Obtained Using TaqMan Assay.
In this study, 4 SNP markers (from left to right, C26304T, C26602T, G28152A, and
G36189A) in the XRCC1 gene were typed using TaqMan assay for a subset of 315
individuals out of the overall sample ( =2,244). In the first column, “0” stands
for major allele, “1” stands for minor allele. The weighted average (case plus con-
trol) of haplotype frequency estimates reported in Han et al. (2003). The haplotype
frequency estimates of the benchmark were obtained by using PLEM.

ters, and cannot handle well the elongated shape of these clusters. The -mixture

clustering method addresses the inherent limitation of the -means method using

a Bayesian approach based on the mixture of -distributions and can score geno-

types probabilistically, which allows for the incorporation of genotyping uncer-

tainties in subsequent analyses.

In our -mixture clustering algorithm, users can either include or exclude the NFS

cluster beforehand. The reasons for excluding the NFS cluster a priori are as fol-

lows: (1) blank control samples are often known to the laboratory technician in

advance and there is no need to classify them (i.e. there is no ”ambiguity”). (2)

Genotyping assays for the vast majority of SNP assays typically have a success

rate of greater than 98%, which results in a very small group size for assay failures

of real samples, which are visually detectable as belonging to the NFS cluster. (3)

The small cluster size of NFS may result in an unstable estimate of the variance-

covariance matrix, which may compromise the performance in some cases. How-

ever, we overcome these problems by using informative priors and imposing an
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identifiability constraint on the parameter space.

Poor separation between genotype clusters always constitutes a problem in geno-

type scoring. For those ambiguous data points, we demonstrated that one clearly

loses information by throwing away ambiguous individuals and tends to result

in reduced accuracy in haplotype frequency estimation when using deterministic

calls. Probabilistic scoring gives rise to more quantitative information and flexibil-

ity in the haplotype phasing step and thus can improve the accuracy in haplotype

phasing especially in high LD and high ambiguity situations.

The haplotype inference method presented here is formulated for unrelated indi-

viduals in random samples of case-control association studies or sib-pair studies

without parental data. Although many genotyping errors can be directly resolved

in light of parental genotype data, a substantial fraction of errors may still go un-

detected on the basis of inheritance checking (Douglas et al., 2002). The strategies

described here should be also applicable to pedigree data, but modifications of the

haplotype inference procedure are necessary. Facing the same capacity problem as

encountered by the EM algorithm for haplotype inference, the current approach is

limited in the number of linked loci, especially when ambiguous marker loci are

abundant. The Partition-Ligation strategy introduced in Niu et al. (2002) can be

applied to solve this problem, where genotyping uncertainties can be addressed at

each atomistic unit.

It is still an unsolved issue in case-control epidemiology studies how to best use the

haplotype frequencies and phases inferred from the genotype data. The classical

chi-square test is no longer valid because haplotype counts in both cases and con-

trols are not observed, but rather inferred. We used a randomization procedure for

the power comparison of the three phasing strategies in case-control studies (Ta-

ble 2.2). The randomization procedure is a non-parametric means for deriving the

threshold for a pre-specified type-I error and may thus be less powerful compared
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to a valid parametric test. However, such permutation tests are guaranteed to have

the stated significance level and have been a popular method in case-control stud-

ies for investigating haplotypic effects.

In sum, the statistical handling of uncertainties in genotype scoring merits more at-

tention than they have received in the past. The use of formal statistical procedures

like ours relieves geneticists of the responsibility of manually determining the cor-

rect values of doubtful genotypes, and is thus essential for an efficient analysis of

high-throughput data. The statistical model presented here is formulated only for

SNP markers and is not directly applicable to microsatellite genotyping. But our

algorithms can be straightforwardly generalized to that situation or be used di-

rectly if the microsatellite alleles are binned into two categories using a reasonable

allele size cut-off. Although we considered only Taqman, OLA and MassARRAY,

the same strategies developed in this article can be extended to handle data from

other experimental platforms such as florescence polarization-single base exten-

sion and Illumina’s BeadArray technologies, Third Wave’s Invader assay, rolling

circle amplifications, and molecular beacons.
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Bayesian Approach to Haplotype Linkage
Disequilibrium Mapping for Complex Disease

Abstract

The BLADE algorithm (Liu et al., 2001) introduced a Bayesian approach for utiliz-

ing full haplotype information to make an inference on the location of the disease

mutation as well as the ancestral haplotypes, mutation rate, and the historical re-

combination events. One of the key model assumptions of the BLADE algorithm

is that there is a single mutation in the disease gene and all mutations occur in

the same location of the disease gene. We developed a new method relaxing the

one-mutation-locus assumption to allow multiple mutations on different loci on

the same chromosome. This approach allows one to discern the interaction effects

of susceptible loci to the disease as well as the localization of the mutations and the

identification of the historical recombination events descending from founder hap-

lotypes. Using simulation data sets and the well-known Cystic Fibrosis data set,

we prove that the new method (BLADE2) performs better the old BLADE method

even when there is one mutation locus.



3.0 Preface

This paper is an extension of Liu et al. (2001).

3.1 Introduction

For last two decades, disease association studies have made it possible to claim

that a glitch in one or another gene raises the risk of diseases from cancer to heart

disease, schizophrenia to depression. In many cases, disease gene carriers in the

current population are descendant from a small number of “founders” in whose

genomes the deleterious mutation appeared some generation ago. Because of the

shared ancestry, in the haplotypes of the disease population, we observe the non-

random assortment of alleles. This is the key idea of linkage disequilibrium (LD).

(Ardlie et al., 2002)

Most common methods for finding LD is to measure the discrepancy at each

marker between a case and a control sample. However, this is not powerful when

the markers are tightly linked, because it is believed that contiguous markers in a

chromosome are not independent and haplotypes have a block structure (Gabriel

et al., 2002). McPeek and Strahs (1999) and Morris et al. (2002) introduced hidden

Markov model incorporating the dependent structure of the contiguous markers

(i.e., haplotype). Liu et al. (2001) introduced a Bayesian approach (BLADE algo-

rithm), which explicitly model positions of the historical recombination and muta-

tion events that produced the observed haplotypes from an initial set of founders.

The BLADE algorithm assumes that there is a single mutation in the disease gene

and all mutations occur in the same location of the disease gene. However, it is be-

lieved that some diseases such as type 2 diabetes and Crohn disease have multiple

disease susceptible loci (Rioux et al. (2001), Florez et al. (2004)) and our understand-
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ing of the genetic association of such complex disorders is still mostly unknown.

Hence, the main focus of this paper is to extend the BLADE algorithm to perform

LD mapping for complex disease with two probable disease mutations and study

the interaction effects of susceptible loci to the disease.

The primary goals of our algorithm are the localization of genes responsible for the

disease within the considered set of markers, the determination of ancestral haplo-

types, the construction of haplotypes from unphased chromosomes, the separation

of distinct founders of the disease, and inference on the ages of the mutations caus-

ing the disease. Furthermore, we want to determine which of the two disease mu-

tations is found in individuals’ haplotypes who shares a founder. In our Bayesian

model framework, the main parameters of interest are the locations of the disease

mutations, the age of mutations, and ancestral haplotypes. To simplify the sam-

pling steps, we also introduce the (unobservable) locations of recombinations as

auxiliary variable. Like most of Bayesian data augmentation approaches, our al-

gorithm is very flexible in treating various complications such as missing marker

data, multiple founders, and unphased chromosomes. We call our new algorithm

BLADE2.

In section 3.2, we present model assumptions for building the likelihood function

and in section 3.4, we describe the iterative Monte Carlo sampling steps for each

variables. In section 3.5, we test the new algorithm by various simulation studies

and illustrate the advantage of the new method over the previous BLADE algo-

rithm and apply the new method to real-data example.

3.2 Model Assumptions

The basic idea of the model is that the current disease haplotypes are the de-

scendant from a few founders with disease mutations and the haplotype sharing
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among the descendant from a common ancestor decays in succeeding generations.

The decay is due to recombination events and mutations, which result in conser-

vation of only a small region of the ancestral haplotype around the mutation.

We assume that there are clusters for the disease haplotype, corresponding

to founder haplotypes in the current disease population and one null cluster for

all other disease chromosomes. The null clusters can also represent phenocopies of

disease haplotypes because disease haplotypes could also carry none of the disease

mutations at the disease loci. Each cluster except for the null cluster shares the

haplotype with its own ancestor. Given the known ancestor, disease haplotypes

are assumed to be from unrelated individuals.

The decay of haplotype sharing occurs mostly due to recombinations. A recombi-

nation frequency between markers is correlated with the distance between mark-

ers. Generally speaking, the greater the physical separation between genes along

a chromosome, the greater chance for a recombination event to take place. Instead

of the physical distance, we use the genetic distance (or map distance) to calculate

the recombination frequency and it is known to us. Given the genetic distance

in unit of Morgan between two markers, the recombination probability is known

as according to Haldane’s mapping function (Hartl and Jones,

1998). We further define so that is the probability that there

is no recombination between the two markers. When is small, holds true,

hence, we refer to as the genetic distance. We assume that recombinations oc-

cur as a homogeneous Poisson process disregarding a haplotype block structure.

We assume that the ratio of physical to genetic distance is constant (we assume

that 1cM 1MB). To simplify the mutation process, we assume that there is a small

probability for each locus to mutate and is assumed to be identical for each

marker and each individual. When a marker mutates, it has a equal chance to to

turn into other alleles.
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To simplify the genealogy structure of the data, we assume that the coalescence

process that generates the observed disease haplotypes within each cluster can be

approximated by a star genealogy; that is, given the same ancestor, haplotypes in

the cluster are mutually independent. The correlations among the disease haplo-

types are partially accounted for by allowing for multiple founder haplotypes with

different ages.

Finally, we assume that there are at most two loci with disease mutations on the

ancestral haplotypes and all mutations occur in the same location of the disease

gene for all the ancestral mutations. This assumption nests the case where there

is only one mutation locus as the previous BLADE algorithm, because having the

two mutation loci on the same (or very close) location is equivalent to having a sin-

gle location. By relaxing the one-locus assumption, we are allowed to study inter-

actions of the disease susceptible mutations and determine which is the dominant

mutation when there are two competing disease variants. This gives our model

more flexibility to study different risks involved with each mutations. Figure 3.1

illustrates various cross-over scenarios and corresponding disease risks. If the in-

teraction of the two genetic variant causes high risk of the genetic disease, then we

find more disease haplotypes containing the both disease mutations in the current

population. If one of the two mutations is dominant over the other for causing the

disease, then we find the haplotypes with that mutation more than the one with

the other in the current population. Especially when the two mutations are not too

close to have a non-trivial probability for having recombination between the two

mutations, this sub-clustering plays a key role to determine the genetic cause of

the disease.
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3.3 Model Formulation

Data Description

We denote a collection of disease haplotypes , where is the

number of haplotypes. Each individual haplotype is a vector ,

where is (a numeric code of) the allele at marker locus for the individual

and is the number of marker loci. The order and distance of marker loci are

known a priori by the genetic distance in unit of Morgan between the left most

marker and -th marker from the left. As we discussed before, we can compute

that the probability of having no recombination between marker and marker as

. At marker , there are different alleles, labeled as .

Depending on the inter-marker distances of the data, it is necessary to introduce a

Markovian structure on the non-disease haplotype in which we need to estimate

the allele frequencies conditional on the adjacent markers in stead of marginal fre-

quencies.

3.3.1 Control Data Model

The data have control group and disease group. The control group haplotypes are

used for estimating control data haplotype frequencies and they are not directly

involved with the model parameters such as the disease locations and ancestral

haplotypes. However, it is important to obtain accurate estimates for the control

data haplotype frequencies for estimating the parameters accurately, because the

inference on the parameters are based on the LD between the two group.

We need to specify the model for the control data haplotypes to compute the likeli-

hood for case group when computing the probability of the segment of the disease

haplotype replaced by non-disease haplotype through recombinations. However,

we do not focus on making an inference on the frequencies of the non-disease hap-
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lotypes, because it is not our main interest in this paper and usually we can obtain

a large number of control data to have accurate estimates by simply using sample

means. It is more important to note, however, that we need to choose which model

to use to compute the probability of the haplotype given the estimated marginal or

conditional frequencies of the alleles. We suggest two choices as follows.

Independent Marker Model

This model assumes that the genetic markers are in linkage equilibrium, that is, an

allele frequency at a given marker is independent of the allele at the neighboring

markers. This model is suitable for the markers whose genetic distances between

them are large. The likelihood is

(3.1)

where is the estimated allele frequency of allele at marker , is the

contiguous haplotype segment and is a notation for the control

data likelihood. We estimate by using sample mean.

Markov Model

This model assumes that the genetic markers are in linkage disequilibrium, that is,

an allele frequency at a given marker is dependent of the allele at the neighboring

markers when the markers are close to each other. For simplicity of the model, we

only consider lag-one dependence and assume that lag-one dependence construc-

tion takes account for the other information for the linkage disequilibrium, such

as haplotype block structure or the genetic distances between markers. Again, we

estimate the lag-one conditional allele frequencies by sample mean. We construct

the joint distribution from a left marker to a right marker, since the direction of the
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conditional distribution does not matter for computing the joint distribution:

(3.2)

where the estimated conditional allele frequency at marker given

the allele information at marker .

3.3.2 The Disease Data Likelihood

Model Parameters

Our main parameters of interest are the location of the two mutations repre-

sented by the genetic distances between leftmost marker and the disease muta-

tions, , . The number of generations, referred as the age of mu-

tations for the current sample is denoted by , where is the age

for cluster . For each cluster , there is an ancestral haplotype ,

where , is the ancestral haplotype for founder at each marker.

Another model parameter is the mutation probability . According to our model

assumption, we compute the probability that an allele at locus mutate from allele

to allele in generations:

Missing data

Missing data refer to the unobservable variables introduced for the computational

convenience. In our model, we introduce a cluster indicator variable for each

disease haplotype , indicates that the haplotype belongs to the null

cluster (phenocopy) and indicates that the disease loci

are inherited from the founder haplotype . That is, implies that the
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Figure 3.1: Diagram showing a double cross-over.
If the interaction of genetic variant ’a’ and ’b’ cause the genetic disease, then the
next generation still contains the two mutations and is risky of the disease. If the
interaction of genetic variant ’a’ and ’c’ cause the genetic disease, then the interac-
tion effect is broken by the double cross-over and the next generation is less risky
of the disease. (Image credit: Hartl and Jones (1998).)

Marker 1

Disease
Locus 1

Disease
Locus 2

Marker m

Haplotype

Recombinations

Figure 3.2: A graphical representation of the haplotype model.
There are a total of markers. Each vertical solid line represents the location of
a marker. The vertical dotted lines are the locations of recombinations. Parame-
ter and are the “recombination distance” from the disease locus to the first
marker. The gray area represents the chromosomal piece which was replaced by
non-ancestral alleles by recombination events. Note that the middle gray area can
result from a double cross-over. The white area is a chromosomal piece in the re-
gion that is identical by descent with the founder. The recombination event closest
to the first disease locus occurred between markers and and that from
the middle region occurred between markers and , and and ,
and that from the right arm occurred between markers and .
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haplotype of the -th individual shares the alleles with the ancestor haplotype in

the small region around the mutations.

Given that , we can sub-classify the haplotype into three cases: the disease

haplotype conserves the mutation only at the first mutation locus , the disease

haplotype conserves the mutation only at the second mutation locus , and the

disease haplotype conserves the mutation at both loci. Therefore, we define the

index for identifying this disease mutation conservation status, and ,

where means that , i.e. the haplotype is a phenocopy and conserves

no ancestral mutations, suggests that the disease haplotype conserves the

mutation at the first locus, suggests that the disease haplotype conserves

the mutation at the second locus, and suggests that the disease haplotype

conserves the mutation at both loci.

Depending on the sub-cluster information, we can specify the set of variables to

locate the position of recombination events nearest to the disease loci. When there

is only one disease locus, there is only one contiguous set of markers that conserve

the alleles from the ancestor. When , we refer that the nearest recom-

bination event on the left side of the haplotype from the mutation locus occurs

between markers and Similarly, we define on the right side.

When both mutations were conserved, one possible scenario is that a set of con-

tiguous markers between and is replaced by non-ancestral haplotypes by a

double cross-over between the two mutations. We add another set of variables

denoting that the two ends of the replaced markers such that the left end

of the double cross-over occurs between markers and , and the right end

occurs between and . Figure 3.2 illustrates the structure of the disease

haplotype decayed by recombinations. Note that and may not exist

provided that there is no recombination events in the region of the data since its

founder.
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Given the missing data , it is simplified to write the condi-

tional likelihood or the complete data likelihood and they can get easily marginal-

ized out to compute the observed data likelihood, because

are all discrete variables.

For notational convenience, we denote the two markers flanking the mutation lo-

cus at by and and the two markers flanking the mutation locus at by

and .

The Complete Data Likelihood

The complete data likelihood is the joint distribution of the observed data

and missing data , given the parameters . If

the -th individual haplotype is clustered as a phenocopy, i.e. , then

are not defined and the likelihood is same as the control data like-

lihood, which simply is a population frequency the haplotype among the control

group:

where is a priori probability of the cluster frequency for the null cluster. When

, the complete data likelihood equation can be factorized into two or three

parts depending on the sub-cluster data . When there exists only one mutation

either at or at , the joint distribution is factorized into the left arm of the hap-

lotype and the right arm:

(3.3)
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for , where denotes the ancestral haplotype for cluster , is a priori

probability of the cluster frequencies for cluster , and is a priori probability

of the sub-cluster frequencies for sub-cluster . We discuss this and other prior

distributions in the next section.

When , the complete data likelihood is factorized into three parts, which

correspond to the three subpieces of the haplotype, the left of , between and

, and the right side from , as illustrated in Figure 3.2:

(3.4)

(3.5)

Since the probability of having at least one combination in generations between

the -th marker and -th marker is , we have

(3.6)

and

(3.7)

where is the probability of the segment of the haplotype under control data

model as described in Section 3.3.1.
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The second term in the complete data likelihood (equation (3.5) is:

where is the probability that no double cross-over

occurs between the two disease mutations during a meiosis, which is an approxi-

mation under the assumption that the genetic distance between the two mutation

locus is too close and the probability of a triple or more cross-over on the haplotype

region between and is ignorable. This is a reasonable assumption, because we

are considering haplotypes on a single chromosome. Equation corresponds to

the case where at least double cross-over occurs between two disease mutations

in generations. This equation is an approximation under the assumption that

is close to 0. Equation corresponds to the case where no double cross-over

occurs in generations.

Since all the missing data are discrete, we can marginalize

them out by summations to compute the observed data likelihood of the single

95



haplotype. First, we marginalize out and

if

(3.8)

then, we marginalize out and

(3.9)

(3.10)

where if , and if .

Under the conditional independence assumption, the observed data likelihood of

the disease haplotypes is obtained by the product of the single-observation likeli-

hood:

(3.11)

Prior Distributions

For computational convenience and non-subjective estimation, we use uniform

prior for our parameters. Since, and have a finite space, we can use proper

uniform prior . We also assume uniform prior on the an-

cestral haplotype , i.e. the marginal allele frequency of a particular marker is
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equal for all possible alleles for all cluster . For , we limit its value on finite

discrete support with equal probability. For , uniform prior on log-scale is used,

. These prior distributions simplify the implementation

and our empirical study showed that the estimation on and is not sensitive

on the choice of the prior values on and . All the parameters are independent

a priori.

3.4 The Sampling Algorithm

By Bayes rule, the posterior distribution of the parameters is

However, it is easier to work with complete data likelihood. Data Augmenta-

tion algorithm (Tanner and Wong, 1987) makes model-fitting simpler especially

in high-dimensional models. Thus, we impute the missing data at each iteration,

treat them as if they were observed, and find the conditional posterior distribu-

tion of the parameters given the current values of the missing data. This iterative

process generates the draws from the joint distribution of missing data and param-

eters:

where and are vector notations of and ,

respectively.

Due to the high dimensionality of the posterior distribution, we decompose the

sampler into the following conditional sampling steps. We use to de-

note the conditional distribution of given under the target posterior dis-

tribution. We denote the collection of missing data, .
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To speed up the convergence of the sampler, we marginalize out missing data, if

necessary. Since all the conditional posterior distribution is conditioned on the

observations, the notation is omitted in the following formulas. The algorithm

iterates through the following steps.

1. Draw from . Since is discrete, a new is sampled with

the probability proportional to

2. Draw from

3. Draw from . In particular, Draw

according to equation (3.6) and (3.7), if . Draw

according to equation (3.4), if .

4. Draw from . Since we use the discrete

prior for , a new will be sampled with the probability evaluated at each

value of :

5. Draw from . Since the value of is highly correlated with the

recombination positions, we need to sum out all the missing data to speed

up the sampler. We draw via Metropolis-Hastings step (Hastings, 1970;

Metropolis et al., 1953) by sampling candidate draw from uniform distri-

bution on :
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where and . Subsequently,

where and . The candidate is

accepted with probability

where is from equation (3.11).

6. For cluster , we update the ancestral haplotype one marker at a

time. We draw from for . The probability

is proportional to

7. Draw from via Metropolis step (Metropolis et al., 1953) by sam-

pling candidate draw from uniform distribution on log-scale,

The candidate is accepted with probability

where is from equation (3.11).

3.5 Results

3.5.1 Simulation Study

We simulated three populations of the disease haplotypes originating from a single

founder who had two mutation loci, 150 generations ago. Three populations are:
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1. a population of haplotypes that conserve the fist mutation only, 2. a population

of haplotypes that conserve the second mutation only, and 3. a population of hap-

lotypes that conserve the both mutations from the founder. The growth rate of the

populations is 1.031, except for the first eight generations where the expansion was

doubled. These parameters were chosen to mimic the history of the European pop-

ulation. We set mutation rate for each marker to be 0.00002 per generation. When

recombination occurs, a disease haplotype recombines with a random one gener-

ated by the Markov control model. We randomly generated the allele transition

matrix for the Markov model in correlation with the inter-marker distance, i.e., we

set the transition probability close to 0 or 1 for the markers close together, and set

the transition probability close to 0.5 for markers far apart. We considered 20 bi-

allelic markers, located at 0.00, 0.07, 0.24, 0.35, 0.42, 0.62, 0.69, 0.79, 0.99, 1.10, 1.29,

1.45, 1.51, 1.62, 1.71, 1.83, 1.96, 2.05, 2.18, and 2.35 cM from the left most marker,

and they are 0.1175 cM apart on average. The first founder mutation is set to locate

between markers 7 and 8, 0.73 cM away from the left most marker and the second

founder mutation is set to locate between markers 14 and 15, 1.65 cM away from

the left most marker. Under the Poisson process assumption, the probability that

a triple or more cross-over occurs during a meiosis within this haplotype range

is very low, , which agrees with our assumption for the approxima-

tion of the complete data likelihood. The 100 control haplotypes were simulated

from the Markovian model. We randomly selected 80 disease haplotypes from the

final generation of the three populations and added 20 randomly generated inde-

pendent haplotypes from the control data population as phenocopies. To test the

algorithm in various situations, we had different combinations of the three kinds

of disease haplotypes for each simulation study. In the following table, denotes

the number of phenocopies in the disease haplotype data set, denotes the num-

ber of the disease haplotypes from the population 1, denotes the number of the

disease haplotypes from the population 2, and denote the number of the disease

haplotypes from the population 3.
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CASE 0 20 80 0 0
CASE 1 20 0 0 80
CASE 2 20 20 20 40
CASE 3 20 10 30 40
CASE 4 20 30 10 40
CASE 5 20 40 40 0

CASE 0 is the case that only the first mutation is the cause of the disease and the

second one is irrelevant and CASE 1 occurs when the disease is caused only when

the disease haplotypes have both mutations. Assuming that the simulated data

set is randomly sampled from the disease population, CASE 2, 3, and 4 emulate

the situation that the two mutations positively interact to increase the disease risk;

when both mutations are equally risky, when the first mutation is less risky, and

when the second mutation is less risky, respectively. CASE 5 represents the sce-

nario that the two mutations interact negatively toward the risk in a way that two

mutations completely erase the risk. We added 20 phenocopies for every case to

test the robustness of the algorithm. Note that only CASE 0 is suitable for using the

previous BLADE. Although CASE 0 has only one mutation, we expect the BLADE2

algorithm to draw and around the true location.

Firstly, we analyzed the simulation CASE 0 for direct comparisons between BLADE

and BLADE2. We computed a single marker measure of disequilibrium, which is

defined as

where ranges over all of the possible alleles, indicates the disease popula-

tion, and the normal population. Based on the -values (indicated as dots in

Figure 3.3), we could roughly estimate that the disease locus was near marker 7,

where value was the highest. We also drew 1,500 MCMC draws and discarded

the first 5000 draws for burn-in period via BLADE and BLADE2. We summarized

the results in Figure 3.3 and Table 3.1.
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Figure 3.3: Histograms of the Mutation Loci for Simulation Study CASE 0.
The top plot is the histogram of and from the BLADE2 output. Note that
the two variables are sampled around the input location marked by the vertical
line at 0.738 cM. The empty bars are the histogram of and the shaded bars are
the histogram of . Remember the restriction that . The middle plot is the
histogram of from the BLADE2 output. The bottom plot is the histogram
of from the BLADE output. The long vertical line at 0.738 cM is the input value
of the mutation location for data generation. The thick short vertical lines at each
histogram represent the locations of 20 markers in the data set. The dots are single
marker measures of disequilibrium ( ) at all marker locations. One can roughly
guess that the disease locus is around 7,8-th markers based on the -values.

Algorithm Variable 95% Interval Median Mean Root.Mse
(0.584, 0.750) 0.704 0.701 0.055

BLADE2 (0.702, 0.958) 0.748 0.773 0.077
(0.690, 0.819) 0.731 0.737 0.032

BLADE (0.691, 0.756) 0.726 0.725 0.021

Table 3.1: Summary of the Posterior Draws for the Mutation Loci from Simulation
Study CASE 0.
All intervals contain the input value for the mutation location, 0.738
cM away from the leftmost marker. Root.Mse is computed by

the number of MCMC draws .
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As illustrated in the first histogram in Figure 3.3, the posterior draws of and

from the BLADE2 result are close to the true value, as we expected. No draws

wander more than two markers away from the true location and in about 60% of

the draws, the true location is contained between the two parameters. This is a

very strong indication that the data set has only one disease mutation. Therefore,

we decided to use as a summary statistics and the histogram is shown

at the second plot in Figure 3.3. The new statistics does a better job than using

either or only. The Root MSE value is much smaller than the previous cases.

We also applied BLADE to this data provided that we knew that there is only one

mutation locus. The histogram is shown at the third plot in Figure 3.3. Among

the three histrograms, BLADE did the best job according to Root MSE values, but

only marginally better than the method by from BLADE2. However,

one should note that BLADE is applicable only under the assumption that the dis-

ease haplotypes have one mutation locus and the smaller variance (or MSE) on

the estimate is benefiting by this assumption. We will examine the case when this

assumption is not valid.

Now, consider CASE 1, where the disease occur only when the both mutations are

conserved from the founder. Single marker measures of disequilibrium value

predicts that the disease locus is near 11-th marker althogh its value is not signifi-

cantly higher that the others. The single marker approaches does a poor job unlike

CASE 0 Using BLADE for such data set can also be dangerous, especially when

the sampler can not correctly estimate either of the mutation. Figure 3.4 shows the

histograms of the posterior draws by the two algorithms. It is clear from Figure 3.4

that BLADE does a poor job at estimating the mutation loci, whereas BLADE2 does

a superior job at finding the mutation loci. Similar results were obtained when we

used the BLADE algorithm for two locus data sets. We summarized the posterior

inferences of the other simulation cases in Table 3.2.
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Figure 3.4: Histograms of the Mutation Loci for Simulation Study CASE 1.
The top plot is the histogram of and from the BLADE2 output. The empty
bars are the histogram of and the shaded bars are the histogram of . The
bottom plot is the histogram of from the BLADE output. The long vertical lines
at 0.738 cM and 1.649 cM are the input values of the mutation locations for data
generation. The thick short vertical lines at each histogram represent the locations
of 20 markers in the data set. It is clear that the estimate by BLADE is off the
target, however, the BLADE2’s posterior draws contain the true value in their 95%
posterior intervals. The dots are single marker measures of disequilibrium ( ) at all
marker locations, whose values are higher around 11-th marker. Using the single
marker measure or the BLADE algorithm for two marker mutation data sets can
be dangerous.

(0.738)
Case 2.5% 97.5% Mean 2.5% 97.5% Mean

CASE 1 0.669 0.916 0.771 0.069 1.589 1.825 1.706 0.082
CASE 2 0.564 0.885 0.731 0.073 1.559 1.855 1.711 0.099
CASE 3 0.733 1.094 0.877 0.165 1.590 1.858 1.701 0.086
CASE 4 0.477 0.797 0.663 0.113 1.466 1.880 1.663 0.112
CASE 5 0.731 1.009 0.882 0.159 1.555 2.029 1.655 0.103

Table 3.2: Summary of the Posterior Draws for the Mutation Loci from Various
Simulation Studies.
All 95% intervals contain the input values for data generation (numbers in paren-
theses). the number of MCMC draws .
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Sensitivity to Genetic Mapping

The BLADE and BLADE2 algorithms uses homogeneous Poisson process for re-

combination counts, i.e., exponential decay of LD among the disease haplotypes.

However, this may not be sufficient due to recent discovery of haplotype block

structure. Recent studies even observed that male and female gametes have dif-

ferent recombination rates. (Kong et al., 2004) A simple solution to this problem

is to allow for inhomogeneous conversion rates between physical and genetic dis-

tances.

To evaluate the sensitivity of BLADE2 to a genetic map, we provide another case

study example where the genetic map of the data is different from the one that

generated the data. We analyze the same haplotype data set used for CASE 1 in

the previous study with different intermarker distances. The order of the mark-

ers are same as before. The new intermarker distances are generated by (true

distance) , which doubles the genetic mapping distances as well as the

recombination rate on average. The top plot in Figure 3.5 shows the change from

the true (data generating) genetic distance to the arbitrary genetic distance for each

marker. In particular, the first mutation located between 7th and 8th marker is

moved from 0.74 cM to 1.67 cM and the second mutation located between 14th

and 15th marker is moved from 1.66 cM to 3.65 cM. We ran the Markov chain for

1,500 iterations and discarded the first 500 draws, for a burn-in period. The his-

togram of and appears in Figure 3.5. The result shows that the mean values

of and miss the true value only by one marker and it still performs moder-

ately well in terms of containing true value inside the 95% intervals even under

the wrong set of genetic distances. The algorithm is not strongly sensitive to the

conversion rates in this example.
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Figure 3.5: Histograms of Posterior Draws for the Location of the Disease Locus
by BLADE2.
The top plot shows the change from the true genetic map to an arbitrary genetic
map. Each line connects the marker location of each marker before and after the
arbitrary conversion. In the first panel, the top ends of the lines represent the
true marker distances used for data generation and the bottom ends of the lines
represent the marker distances used for data analysis. The two dots on each end
are the target disease mutation locations. In the bottom plot, the empty bars are
for the histogram of and the shaded bars are for the histogram of . The long
vertical lines mark the target locations for the founder mutations. The thick short
vertical lines at the bottom of histograms represent the locations of 20 markers
in the simulated data set under the new genetic map. BLADE2 performs well in
terms of locating nearby markers even under the wrong set of genetic distances in
this example.
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3.5.2 Real Data Example

Cystic Fibrosis Data Set.

The CF data set (Kerem et al., 1989) contains haplotypes on 23 bi-allelic mark-

ers around the CF transmembrane conductance regulator gene on chromosome

7q31.2. The control group has 92 haplotypes and the disease group has 94. The

founder mutation, , is located between markers 17 and 18, 0.88 cM away

from the leftmost marker. By modeling the control haplotypes as an inhomoge-

neous Markov chain, BLADE gave a very accurate location estimate for the disease

mutation. The posterior mean was 0.88 cM and the 95% posterior probability in-

terval for the location was [0.82, 0.93] cM (Liu et al., 2001). We apply the BLADE2

algorithm to the same data set and expect to see the draws of and are practi-

cally identical.

As illustrated in the top plot of Figure 3.6, about 75% of the overall range of the

draws of overlaps with the range of the draws of and about 72% of the overall

range of the draws of overlaps with the range of the draws of . This agrees

with the well-known fact that there is a single founder mutation at 0.88 cM in the

Cystic Fibrosis data set. For more detailed analysis of CF data by BLADE, see Liu

et al. (2001).

3.6 Discussion

LD mapping provides a powerful method for fine-structure localization of rare dis-

ease genes, but has not yet been widely applied to common diseases. It has become

increasingly recognized that due to a low penetrance, a single genetic variant is of-

ten insufficient to lead to the manifestation of a common disease. Previous studies

(Liu et al., 2001; McPeek and Strahs, 1999; Morris et al., 2002) have shown that con-
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Figure 3.6: Histograms of Posterior Draws for the Location of the Disease Locus
for Cystic Fibrosis by BLADE2.
The haplotype The top plot is the histogram of and from the BLADE2 output.
The empty bars are the histogram of and the shaded bars are the histogram of

. There is a wide range of overlap between the two histogram, which indicates
that there is one mutation locus in the data set. The bottom plot is the histogram of

. The long vertical marks the known location for the founder mutation.
The thick short vertical lines at the bottom of histograms represent the locations of
23 markers in the data set.
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sidering the entire haplotype leads to more robust estimates for a single disease

location. However, two genetic variants residing within the same genomic region

that occur simultaneously can have a significant impact on either a continuous or

a dichotomized trait. This is precisely what BLADE2 is targeting at, which has

never been addressed by any previous fine-mapping methodologies. By simula-

tion studies, we showed that considering two locus model as a preliminary analy-

sis can help users to decide whether to use one-locus model (BLADE) or two-locus

model (BLADE2), and prevent users from being misled by inappropriate model.

Indeed, when one-locus model is used for a data set with two mutation loci, the

estimate of the mutation location is not close to either of the two loci but some-

where in the middle of the two locations, and it is even more dangerous that the

posterior probability is quite high at this wrong location. See the second histogram

in Figure 3.4. Furthermore, we showed that BLADE2 did a robust estimation when

the disease haplotypes have one mutation locus.

Future works includes applying BLADE2 to real disease study where the disease

is believed to be caused by the two variants. An example for a continuously dis-

tributed trait affected by multiple variants is the plasma triglyceride (TG) level. It

is shown that the simultaneous occurrence of two variant alleles for a SNP pair

(-93T/G and D9N) located at the lipoprotein lipase gene is associated with signif-

icantly lower plasma TG levels, whereas the simultaneous presence of two vari-

ant alleles for two linked loci (-1208-1209TTdel and A455V) in the thrombomod-

ulin gene are associated with significantly higher plasma TG levels (Konstantoulas

et al., 2004; Talmud et al., 1998). An intriguing example for a dichotomized trait is

Crohn disease (Peltekova et al., 2004) - The locus was first mapped to a large region

spanning 18 cM of chromosome 5q31 by a genome-wide scan (LOD score=3.90)

(Rioux et al., 2000), which was further narrowed down to a 983-kb region by fine-

scale LD mapping (Rioux et al. 2001). Although 11 SNPs bounded within a 250-kb

region appear to be associated with the disease, Rioux et al. (2001) could not further
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pinpoint where the disease-associated mutations are located. Later, Peltekova et al.

(2004) found that L503F (located in a transmembrane domain) in SLC22A4 gene

exon 9 and G-207C (located within a heat-shock transcription factor-binding ele-

ment) in the SLC22A5 gene promoter, which are 50 kb ( 0.05 cM) apart, confer an

increased risk for Crohn disease. Besides Crohn disease, concomitant occurrence

of two linked variants, TNF-alpha-308*2 and LT-alpha-NcoI*1 polymorphisms, is

associated with atopic asthma (Wang et al., 2004), and concomitant presence of

Pro12Ala and C1431T variants of PPARG is significantly associated with type 2 di-

abetes (Doney et al., 2004). Given that all the above continuous and binary disease

examples conform to the double-mutation genetic model, BLADE2 will have a sig-

nificant implication for localizing the positions for dual causal mutations in real

world datasets.

Currently, BLADE2 requires multiple (at least 10) genetic loci across the region of

interest to take full advantage of linked haplotypes. Thus, one caveat for the appli-

cation of BLADE2 is that the practitioners are pressed to both identify and geno-

type a dense map of markers in both diseased and non-diseased samples within

the boundaries of the genomic region of interest. With the advent of an ultra-fine-

scale human HapMap (The International HapMap Consortium, 2003), such dense

marker map is becoming available and once its value is fully acknowledged, we

may witness a surging need for our proposed approach described in this paper in

genetic association studies of complex human diseases.

Finally, the homogeneous Poisson process assumption should be examined further

in light of recent discussions of haplotype blocks and recombination hotspots in

which crossing-over events cluster (McVean et al., 2004). Larger genetic to physical

distance conversion, i.e., greater than 1cM / 1MB, should be applied when recom-

bination hotspots are believed to exist between markers. Estimating accurate con-

version rate and sensitivity of BLADE2 to different conversion rate deserve more

attention.
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