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Causal Inference
Structured data

Car make Car color Gesture Bumper 
Sticker Dog Dist. to 

Car
Succesful 

Merge

1 Toyota Red 1 1 1 3 1

2 Ford Blue 0 1 3 1.5 0

3 Honda Yellow 1 0 2 2.3 0

4 Tesla Red 0 1 5 4.6 1



Causal Inference
Unstructured data



Causal Inference with Unstructured Data

• First step: Causal representation learning
Car 

make
Car 

color Gesture Bumper 
Sticker Dog Dist. to 

Car Merge

1 Toyota Red 1 1 1 3 1

2 Ford Blue 0 1 3 1.5 0

3 Honda Yellow 1 0 2 2.3 0

4 Tesla Red 0 1 5 4.6 1



Unsupervised Causal Representation Learning
Identify independently controllable causal factors 

(Car make, Car color)


(Car make + Car color, Car make - Car color)

Unlabelled car images
(Independently controllable) 

causal factors

Identity 

Pitch 

Elevation

Car make


Car color


Window Tint



Why Unsupervised Causal Representation Learning?
Compositional Generalization

[DeepAI 2021]

Car make


Car color


Window 
Tint

Car make


Car color


Window 
Tint



Unsupervised Causal Representation Learning
Identify latent causal factors and their causal graphs

[Ahuja+ 2022]

Latent causal factors

Unlabelled car images:  
white car/blue car

 

 



Unsupervised Causal Representation Learning
Identify latent causal factors and their causal graphs

[Ahuja+ 2022]

Latent causal factorsUnlabelled ball images



Why Unsupervised Causal Representation Learning?
Understand latent drivers and mechanisms in science

[Jia+ 2022]



Causal representation learning

Learn causal 
representations

Interpret causal 
factors

Design effective 
interventions

[Jia+ 2022]



Why can’t we just fit a latent 
variable model?



Why can’t we just fit a latent variable model?

• Fit a nonlinear factor model (variational autoencoder)  to the data 


• Obtain a representation function  for all i.

xi ∼ N( f(zi), σ2) x1, …, xn

̂zi = g(xi)

Identity 

Pitch 

Elevation

Car make


Car color


Window Tint

xi ∼ N( f(zi), σ2)
zi ∼ N(0,I)



Why can’t we just fit a flexible latent variable model?
The non-identifiability of representations from flexible latent variable models

• But the latent variable model can return multiple representation functions that are equally valid 

• Given the same dataset, , fit the same model twice


• One gives  for all i, and the other gives  for all i.

x1, …, xn

̂zi = g1(xi) ̂zi = g2(xi)

Identity 

Pitch 

Elevation

Car make


Car color


Window Tint

xi ∼ N( f(zi), σ2)
zi ∼ N(0,I)



Why can’t we just fit a flexible latent variable model?
When the causal factors are not identifiable (aka underdetermined, non-unique)

• Challenge the interpretation: e.g.      vs     


• Learning the causal graph among non-identified causal factors no longer makes sense


• Prevent the downstream design of targeted interventions for latent causal factors

̂zi = (xi3, xi2) ̂zi = (xi3 + xi2, xi3 − xi2)

Identity 

Pitch 

Elevation

Car make


Car color


Window Tint



Identification of latent causal factors

• Identify latent causal factors


• Suppose the data  is generated by some true latent causal factors  for all i


• Provide an algorithm that takes in  and output  such that  for all i

x1:n xi = g(zi)

x1:n ̂g, ̂zi ̂g = g, zi = ̂zi

Identity 

Pitch 

Elevation

Car make


Car color


Window Tint



How can we identify latent causal factors?
Predominant: Establish identifiability for flexible latent variable models

• Key assumption: Independent latent factors


• Independent component analysis 

• Independent latents + non-Gaussianity


• Variational autoencoder 

• Independent latents + Auxiliary variable


• Independent latents + Gaussian mixture prior 
(w/o auxiliary)

ZdZ2Z1

X1 X2 Xm

…

… …



But latent causal factors are rarely statistically independent…

• They are correlated, or even causally connected.


• What assumptions can help identify correlated latent causal factors?

ZdZ2Z1

C

X1 X2 Xm

…

… …



Geometric signatures: 
Independence of support



Simplest case: Correlated latent causal factors

• Goal: identify the correlated latent factors 


• The latent factors are correlated but not causally connected.

Z1, . . . , Zd

ZdZ2Z1

C

X1 X2 Xm

…

… …
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Correlated latent causal factors
Independent support condition

• Key observation: Latent causal factors 
often have independent support 
supp(Z1, …, Zd) = supp(Z1) × ⋯ × supp(Zd)

Independent support Non-Independent support



Correlated latent causal factors
Independent support condition

• Theorem (W. & Jordan, 2021) Under a positivity condition, no causal connections 
among the latent causal factors implies that they must have independent support.

ZdZ2Z1

C

X1 X2 Xm

…

… …



Correlated latent causal factors
Measure the Independence of support

• Independence-of-support-score (IOSS): A 
disentanglement metric  
 

  
 
where  is the 
standardized  and

 

is the Hausdorff distance.

IOSS ≜ dH(supp(Ḡ1, …, Ḡd), supp(Ḡ1) × ⋯ × supp(Ḡd))

Ḡj = (Gj − inf Gj)/(sup Gj − inf Gj)
Gj

dH(X, Y) ≜ max { sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y) }



Correlated latent causal factors
How to enforce independent support?

• Algorithm : 

• Fit latent variable model with IOSS penalty,  
 




•

L + λ ⋅ IOSS

IOSS ≜ dH(supp(Z̄1, …, Z̄d), supp(Z̄1) × ⋯ × supp(Z̄d))



Predict faithfulness to true causal factors



Learning latent causal factors with IOSS



Independent support seems to help, 
but can it identify correlated latents?



Rest of the talk
Data generating process

• Explore the properties of distributions (potentially across domains) and mixing functions  
that permit representation identification of latent causal factors through simple regularizers

g

∀j ∈ {1,⋯, K}, z ∼ ℙ( j)
Z x ← g(z) ZdZ2Z1

C

X1 X2 Xm

…

… …



Correlated latent causal factors
Identification via independent support

• Informal Theorem ([Ahuja, Mahajan, W., & Bengio, 2022]) Under polynomial decoder and bounded true 
factors, the pairwise independent support condition can identify latent causal factors up to permutation, 
shift, and scaling. 

ZdZ2Z1

C

X1 X2 Xm

…

… …



Identification via independent support
Setup

• Data generating process: 


• , 


•  are true latent factors, 


•  is an injective mixing function. 


• Goal: Learn an encoder ; for each  estimate the true latent   


• Representation: .

x ← g(z)
z ∼ Pz

g : ℝd → ℝn

f : ℝn → ℝd x z

̂z = f(x)

Identity 

Pitch 

Elevation

Car make


Car color


Window Tint



Identification via independent support
Identifiability

• Algorithm: 


•                           reconstruction identity


• s.t.              independent support constraint


•  is support of the th dim of the representation .

h ∘ f(x) = x, ∀x ∈ 𝒳
�̂�k,m = �̂�k × �̂�m, ∀k, m

�̂�j j ̂z = f(x)



Identification via independent support
Identifiability

• Identifiability:  

• Under suitable conditions, it identify latent causal factors up to 
permutation, shift, and scaling: 

• the learned representation satisfies 


•  is permutation matrix and  is diagonal matrix.

̂z = ΠΛz + c,
Π Λ

Generalizes linear ICA to polynomial mixing and correlated latents with independent support



Identification via independent support
How can we achieve identification?

• Two steps: 

• Polynomial decoder gives affine (a.k.a. linear) identification 


• Independent support gives further coordinate-wise identification, 
 is permutation matrix and  is diagonal matrix.

̂z = Az + c

̂z = ΠΛz + c, Π Λ



Geometric Intuition

z1

z2



Geometric Intuition

36

z1 ̂z1

̂z2z2

̂z = Uz



What if the latent causal factors 
are causally connected?



Causally connected latent causal factors
Interventions (+IOSS) are here to help!

• Interventions—by definition—mutilates the arrow between the intervened variables and its parents.


• Can handle both perfect interventions and (some) imperfect interventions 


• Identify latent causal factors with sufficiently many interventions; then identify their causal graph

Causally connected latent factors Non-causally-connected latent factors

ZdZ2Z1

C

X1 X2 Xm

…

… …



Interventional Causal Representation Learning
Geometric Signatures from multi-domain interventional data

• Do not know which latent causal factors were intervened on.


• Only know some factors were intervened.


• Geometric signatures reveal the latent causal factors.



Causal Representation Learning using Geometric signals 
Correlated or causally connected latents; distribution-free identification

[Ahuja, Mahajan, W., & Bengio, 2022]



Causally connected latent causal factors
Interventions (+IOSS) are here to help!

∥[∇h ∘ f(x) − x∇2] + λ( fk(x) − z†)2

Autoencoder with do intervention penalty 

Autoencoder with IOSS penalty 

∥[∇h ∘ f(x) − x∇2] + λ∑
k∞j

≤𝔼≠≠k,j



Interventional Causal Representation Learning

• Mean correlated coefficient (MCC) with the true causal factors.


• Interventional causal representation learning with IOSS can identify true latent 
causal factors, without compromising reconstruction quality.



What just happened?

• Single-node perfect and some imperfect interventions 


• One fixed causal graph for entire observational data 


• These assumptions do not apply to complex multi-domain datasets



The fixed causal graph assumption



General Multi-domain Causal Representation Learning
An invariance principle for causal representations

Distributional properties of a subset of latents is same between two domains

F[p(1)
Z𝖨

] = F[p(2)
Z𝖨

]



General Multi-domain Causal Representation Learning
An invariance principle for causal representations

• Multi-node imperfect interventions  

• Distributional properties (e.g. support) of 
intervened nodes and downstream 
nodes ( ) change


• Rest of the nodes ( ) are not impacted  

𝖮
𝖨

z1z2

z3 z4

z6z5

𝖮

𝖨



General Multi-domain Causal Representation Learning

[Ahuja, Mansouri, & W., 2023]



General Multi-domain Causal Representation Learning
Autoencoder with invariance penalty

• Algorithm (Autoencoder with invariance penalty) 

• ∥[∇h ∘ f(x) − x∇2] + λ∑
j∞k

D(pj
̂z𝖨𝖲 

, pk
̂z𝖨𝖲 

)



Empirical Studies



Causal Inference with Unstructured Data
Switching Dynamical Systems



Takeaways

• Causal inference with unstructured data requires identifying latent causal 
factors first, a task known as causal representation learning 

• The goal is to identify latent causal factors from unlabelled observational, 
interventional, or multi-domain data.


• Causal factors are often correlated or causally connected. How to identify? 


• Consider geometric signatures e.g. independence-of-support


• Identify latent causal factors from observational, interventional, and general 
multi-domain data with the independent or invariant support constraint.



• Y. Wang and M.I. Jordan  
Desiderata for Representation Learning: A Causal Perspective  
Journal of Machine Learning Research, 2024+   
https://github.com/yixinwang/representation-causal-public


• K. Ahuja, D. Mahajan, Y. Wang, and Y. Bengio 
Interventional Causal Representation Learning 
ICML 2023 (Oral)  
https://github.com/facebookresearch/CausalRepID


• K. Ahuja, A. Mansouri, and Y. Wang 
Multi-Domain Causal Representation Learning via Weak Distributional Invariances 
AISTATS 2024 
https://github.com/facebookresearch/MD-CRL

Thank you!

https://github.com/yixinwang/representation-causal-public
https://github.com/facebookresearch/CausalRepID


Extra slides



Affine Identification
Reconstruction identity h ∘ f(x) = x, ∀x ∈ 𝒳

  
   (Theorem, Ahuja et al.)  

 is an injective polynomial &  has a non-empty interior.  

Solve the reconstruction identity with the  as a polynomial    
 


, 


           

g 𝒵

h

̂z = Az + c ∀z ∈ 𝒵



Affine Identification

h ∘ f(x) = x
h( ̂z) = g(z)

H

1
̂z
̂z 𝒮 ̂z
𝒰
̂z 𝒮 ⋯ 𝒮
p times

̂z

= G

1
z
z 𝒮 z
𝒰

z 𝒮 ⋯ 𝒮
p times

z



Affine Identification

z = A

1
̂z
̂z 𝒮 ̂z
𝒰
̂z 𝒮 ⋯ 𝒮
p times

̂z

z = A1 ̂z + A2 ̂z 𝒮 ̂z + ⋯ + Ap ̂z 𝒮 ⋯ 𝒮
p times

̂z



Why invariance works?

̂z(1)
1

d= ̂z(2)
1

θz(1)
1 + ϵz (1)

2 + αz(1)
3

d= θz(2)
1 + ϵz (2)

2 + αz(2)
3

β(z(1)
1 ) + ϵγ(1)

2 + αγ(1)
3

d= β(z(2)
1 ) + ϵγ(2)

2 + αγ(2)
3

z1

z2 z3



Why invariance works?

z1

z2 z3

β(z(1)
1 )

u

+ ϵγ(1)
2 + αγ(1)

3

v

d= β(z(2)
1 )

ũ

+ ϵγ(2)
2 + αγ(2)

3

ṽ
Mu(t)Mv(t) = Mũ(t)Mṽ(t)
v d= ṽ



Why support invariance works?



Image Experiments Setup



Identification via independent support
Why does independent support help?

• Independent support gives further coordinate-wise identification, 
 is permutation matrix and  is diagonal matrix.


• Why？Suppose we have two sets of representations  and 


• Polynomial decoder makes them linearly identifiable. , 
. 


•  and  cannot both have independent support when 
 are all nonzero.

̂z = ΠΛz + c, Π Λ
(z1, z2) ( ̂z1, ̂z2)

̂z1 = a11z1 + a12z2
̂z2 = a21z1 + a22z2

(z1, z2) ( ̂z1, ̂z2)
a11, a12, a21, a22



Identification via independent support
Why does independent support help?

• Why？ 

• Core step: When , . 


•  and  cannot both have independent support when 
 are all nonzero.


• Intuition (example): , , , 

• The support of  depends on the value of , violating independent support.


• , 

̂z1 = a11z1 + a12z2 ̂z2 = a21z1 + a22z2

(z1, z2) ( ̂z1, ̂z2)
a11, a12, a21, a22

̂z1 = z1 + z2 ̂z2 = z1 − z2 supp(z1, z2) = [1,2] × [0,2]
̂z2 ̂z1

supp( ̂z2 | ̂z1 = 4) = {0} supp( ̂z2 | ̂z1 = 1) = {1}



Interventional Causal Representation Learning
Geometric Signatures III: Perfect and imperfect interventions

• Data generating process: 


• Support independence under intervention on i 𝒵(i)
i,j = 𝒵(i)

i × 𝒵(i)
j ∀j ∈ 𝖨



Interventional Causal Representation Learning
Geometric Signatures III: Perfect and imperfect interventions

• Algorithm: 


•   reconstruction identity 


•     pairwise independent support constraint


• : support of  under do intervention on 

h ∘ f(x) = x, ∀x ∈ 𝒳 ′ {′t
j=1𝒳(i,j)}

�̂�(i)
k,m = �̂�(i)

k × �̂�(i)
m , ∀m ∈ 𝖨𝖲 

𝒳(i,j) x jth zi



Interventional Causal Representation Learning
Geometric Signatures III: Perfect and imperfect interventions

• Theorem ([Ahuja, Mahajan, W., & Bengio, 2022] 


• Suppose 


• (1) the true mixing function  is an injective polynomial  

• (2) the support of latents  has a non-empty interior 

• (3) the intervened latent’s support is independent from the latents in 


• Then the intervened latent can be identified up to block-affine transformations 

• The algorithm returns representation  that satisfies , 
, where  and  do not share non-zero components.


           

g

𝒵
𝖨

̂z = f(x) ̂zk = a⊗
k z + ck

̂zm = a⊗
mz + cm, ∀m ∈ 𝖨𝖲 ak am



What just happened?

• Single-node perfect and some imperfect interventions 


• One fixed DAG for entire observational data 


• These assumptions do not apply to complex multi-domain datasets



One fixed DAG assumption



An invariance principle for causal representations

• Multi-node imperfect interventions 


• Distributional properties (e.g. support) of 
intervened nodes and downstream 
nodes ( ) change


• Rest of the nodes ( ) are not impacted  

𝖮
𝖨

z1z2

z3 z4

z6z5

𝖮

𝖨



An invariance principle for causal representations

Distributional properties of a subset of latents is same between two domains

F[p(1)
Z𝖨

] = F[p(2)
Z𝖨

]



Self-supervised learning: Instance-level invariance

Subset of latents between two augmentations is same  

ρ(x1) = ρ(x2)



Invariance Constrained Autoencoder

h ∘ f(x) = x, ∀x ∈ 𝒳

F[p(r)
̂z�̂�
] = F[p(s)

̂z�̂�
], ∀r ∞ s

Reconstruction identity

Invariance constraint



Identification under Multi-Node Intervention

• Data generating process

zi ← qi(⋮∪(zi)) + γi, ∀i ∈ [d]
x ← g(z)



Identification under Multi-Node Intervention

• Theorem ([Ahuja, Mansouri, & W., 2023] 


• Suppose 


• (1) the true mixing function  is an injective polynomial  

• (2) the support of latents  has a non-empty interior 

• (3) each node undergoes interventions at least  times, 


• Then, wp , the un-stable (intervened) latent can be separated from stable (un-intervened) latents 

• The algorithm returns representation  that achieves block-affine identification, 

           

g

𝒵

t t ⊤ log(d/ϕ)
log(1/(1 − 1/2d))

1 − ϕ

̂z = f(x) ̂z�̂� = Az𝖨 + c



General Multi-domain Datasets

F[p(1)
Z𝖨

] = F[p(2)
Z𝖨

]
z1

z2

Domain 2

Domain1

Digit style

Digit color



Identification in General Multi-Domain Datasets

• Theorem ([Ahuja, Mansouri, & W., 2023] 


• Suppose 


• (1) the true mixing function  is an injective polynomial  

• (2) the support of latents  has a non-empty interior 

• (3) across domains, the stable latents  have invariant support


• (4) There exist two domains  such that for each  there exists a  such that  with 
strict domination in components in  (for each orthant)


• Then, the un-stable (intervened) latent can be separated from stable (un-intervened) latents 

• The algorithm returns representation  that achieves block-affine identification, 

           

g

𝒵
𝖨

p, q z ∈ 𝒵(p) z𝖲 ∈ 𝒵(q) z ⊤ z𝖲 

𝖮

̂z = f(x) ̂z�̂� = Az𝖨 + c



Interventional Causal Representation Learning
Autoencoder with invariance penalty

• Algorithm (Autoencoder with invariance penalty) 

• ∥[∇h ∘ f(x) − x∇2] + λ∑
j∞k

D(pj
̂z𝖨𝖲 

, pk
̂z𝖨𝖲 

)


