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Causal Inference

Structured data

Car make Car color Gesture BSl:iTlfeerr Dog Digzrto Sl:\::f;:u'
Toyota Red 1 1 1 3 ’
Ford Blue 0 1 3 15 0
Honda Yellow 1 0 2 2 3 0
Tesla Red 0 1 5 4.6 1




Causal Inference

Unstructured data




Causal Inference with Unstructured Data

make cotor O°SWr® Siciey Dog U ° Merge
1  Toyota Red 1 1 1 3 1
2 Ford Blue 0 1 3 1.5 0
3 Honda Yellow 1 0 2 2.3 0
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Unsupervised Causal Representation Learning
Identify iIndependently controllable causal factors

O‘ l Car make
" Oj*’o AR l Car color
OO l Window Tint

Unlabelled car images
(Independently controllable)

causal factors

v/ (Car make, Car color)

x (Car make + Car color, Car make - Car color)



Why Unsupervised Causal Representation Learning?
Compositional Generalization

Car make - = = = gywitches s

Car color

Car color

Window

—y Tint

[DeepAl 2021]



Unsupervised Causal Representation Learning
Identify latent causal factors and their causal graphs
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Observational Data

Latent causal factors

Unlabelled car images:
white car/blue car

[Ahuja+ 2022]



Unsupervised Causal Representation Learning
Identify latent causal factors and their causal graphs
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Unlabelled ball images Latent causal factors

[Ahuja+ 2022]



Why Unsupervised Causal Representation Learning?
Understand latent drivers and mechanisms In science

Target Variable
(Clinical, Environmental, etc.)
Latent Factor

Z,

(TF, miRNA, etc.)

Z ﬁ
Observed feature
(Genes, etc.)

[Jia+ 2022]



Causal representation learning
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Why can’t we just fit a latent
variable model?



Why can’t we just fit a latent variable model?

8 o l Car make

> O .O e l Car color X; ~ N (f(Zl-), O 2)
O7 A0 l Window Tint z; ~ N(O,])
& ;

» Fit a nonlinear factor model (variational autoencoder) x; ~ N(f(z,), 6°) to the data Xy eens X,

» Obtain a representation function Z; = g(x;) for all i.



Why can’t we just fit a flexible latent variable model?

The non-identifiability of representations from flexible latent variable models

8 N~ l Car make

0

> O .O T l Car color X; ~ N(f(zi)9 62)
B, 'O l Window Tint G ™Y N (O,I )
Of -

* But the latent variable model can return multiple representation functions that are equally valid

« Given the same dataset, x, ..., x,, fit the same model twice

 One gives Z; = g(x,) for all i, and the other gives Z, = g,(x;) for all i.



Why can’t we just fit a flexible latent variable model?

When the causal factors are not identifiable (aka underdetermined, non-unique)

O N l Car make
" R ' Car color -
O /’:‘0 (Zf, Zf) »
OO B Window Tint
of | ® (&) &
. . |
- (21,2 Observational Data

 Challenge the interpretation: e.g. Z; = (X3, X)) vs  Z; = (X;3 + Xjp, X;3 — X))
* Learning the causal graph among non-identified causal factors no longer makes sense

* Prevent the downstream design of targeted interventions for latent causal factors



Identification of latent causal factors

On l Car make
OO

e *.O o l Car color
O 'O ' Window Tint
of -

* |dentify latent causal factors

 Suppose the data x;., is generated by some true latent causal factors x; = g(z,) for all |

» Provide an algorithm that takes in x;., and output g, Z; such that g = g, z; = Z; for all i



How can we identify latent causal factors?

Predominant: Establish identifiability for flexible latent variable models

 Key assumption: Independent latent factors

 Independent component analysis

e Independent latents + non-Gaussianity

 Variational autoencoder

* Independent latents + Auxiliary variable

* Independent latents + Gaussian mixture prior
(w/0 auxiliary)



But latent causal factors are rarely statistically independent...

ONO
>
@ @&

Observational Data

* They are correlated, or even causally connected.

 What assumptions can help identify correlated latent causal factors?



Geometric signatures:
Independence of support



Simplest case: Correlated latent causal factors

Car make

Car color

A 4
1T T B

Window Tint

» Goal: identify the correlated latent factors Z,, ..., Z;

 The latent factors are correlated but not causally connected.



Correlated latent causal factors

Independent support condition o Com=0.0060 | COFO-??;’S’ :
8. | !
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» Key observation: Latent causal factors 5 selep( (0
often have independent support . e e e e
Supp(Zy, ..., Zy) = supp(£;) X -+ X supp(Z,) Corr=-0.0041 Corr=0.2916
%/ [ I
sh;pe ) | entangle1
Corr=-0.0007 ~ Corr 02514

scale
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Correlated latent causal factors

Independent support condition

Corr=0.2514

entangle3

entangle?

Corr=-0.0059
|

orientation

scale

* Theorem (W. & Jordan, 2021) Under a positivity condition, no causal connections
among the latent causal factors implies that they must have independent support.



Correlated latent causal factors

Measure the Independence of support

 Independence-of-support-score (I0SS): A
disentanglement metric

Corr=0.2514

10SS 2 d,(supp(G,, ..., G,), supp(G,) X -+ X supp(G.))

entangle3

entangle?

Corr=-0.0059
|

orientation

scale




Correlated latent causal factors

How to enforce independent support?

Corr=0.2514
» Algorithm : g ! gl
* Fit latent variable model with IOSS penalty, % ,,
L /1 . |OSS - ehtan'gle?' '

Corr=-0.0059

. 10SS = dy(supp(Z,, ..., Z,),supp(Z;) X -+ X supp(Z,)) '

orientation

scale




redict faithfulness to true causal factors
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Learning latent causal factors with 10SS
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Independent support seems to help,
but can it identify correlated latents?



Rest of the talk

Data generating process

Vie {1, K}, z~PY x < g

* Explore the properties of distributions (potentially across domains) and mixing functions g
that permit representation identification of latent causal factors through simple regularizers



Correlated latent causal factors

Identification via independent support

Corr=0.2514

entangle3

entangle?

Corr=-0.0059
|

orientation

scale

* Informal Theorem ([Ahuja, Mahajan, W., & Bengio, 2022]) Under polynomial decoder and bounded true

factors, the pairwise independent support condition can identify latent causal factors up to permutation,
shift, and scaling.



Identification via independent support

Setup
] i Car make
 Data generating process:
L > ' Car color
°* X € g(Z), I Window Tint

« 7z ~ P_are true latent factors,

¢ g RY - R"is an injective mixing function.

» Goal: Learn an encoderf: R" — | 4. for each x estimate the true latent z

* Representation: 7 = f(x).



Identification via independent support
Identifiability

* Algorithm:
hof(x) = x, Vxe reconstruction identity

o S.t. f?f m = i’?f p X 52" - Vk, m Independent support constraint



Identification via independent support
Identifiability e oo

entation

. Identifiability: LS

 Under suitable conditions, it identify latent causal factors up to
permutation, shift, and scaling:

o the learned representation satisfies 7 = [IAz + c,

 I1is permutation matrix and A is diagonal matrix.

Generalizes linear ICA to polynomial mixing and correlated latents with independent support



Identification via independent support

How can we achieve identification?

 Two steps:

» Polynomial decoder gives affine (a.k.a. linear) identification Z = Az + ¢

* Independent support gives further coordinate-wise identification,
z = 1IAz + ¢, 11 is permutation matrix and A is diagonal matrix.



Geometric Intuition

%)




Geometric Intuition
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What if the latent causal factors
are causally connected?




Causally connected latent causal factors

Interventions (+10SS) are here to help!

causal model mutilated

e 6 causal model
(2% 22) ' intervention

o cﬁo% CPO>>
(z},2))

Observational Data

Causally connected latent factors Non-causally-connected latent factors

* Interventions—Dby definition—mutilates the arrow between the intervened variables and its parents.
 Can handle both perfect interventions and (some) imperfect interventions

» |dentify latent causal factors with sufficiently many interventions; then identify their causal graph



Interventional Causal Representation Learning
Geometric Signatures from multi-domain interventional data

‘
(215 23) ’

Observational Data

B Support

@ ®

zz-
Z
>

Z,

Observational data Do interventional data Imperfect intervention Imperfect intervention
that induces independent support without independent support

1 ,1

e Do not know which latent causal factors were intervened on.
* Only know some factors were intervened.

 Geometric signatures reveal the latent causal factors.



Causal Representation Learning using Geometric signals

Correlated or causally connected latents; distribution-free identification

Input data Assm. on /£ Assm. on g Identification

Obs 4y L Zg|U,U aux info. Diffeomorphic Perm & scale (Khemakhem, 2020)
Obs Non-empty interior Injective poly Affine (Theorem 1)

Obs Non-empty interior ~ Injective poly =~ Affine (Theorem 6)

Obs Independent support Injective poly Perm, shift, & scale (Theorem 4)
Obs + do intervn Non-empty interior Injective poly Perm, shift, & scale (Theorem 2)
Obs + do intervn Non-empty interior Difteomorphic ~2 Perm & comp-wise (Theorem 7)
Obs + Perfect intervn Non-empty interior Injective poly Block affine (Theorem 3)

Obs + Imperfect intervn  Partially indep. support  Injective poly Block affine (Theorem 3)
Counterfactual Bijection w.r.t. noise Diffeomorphic Perm & comp-wise (Brehmer, 2022)

[Ahuja, Mahajan, W., & Bengio, 2022]



Causally connected latent causal factors

Interventions (+10SS) are here to help!

Autoencoder with do intervention penalty

| e f0) = x| + 200 = 27

Autoencoder with IOSS penalty

[k e fo) = x| +2 ) 108S;,

kZj




Interventional Causal Representation Learning

2‘2
i) ’ 4 #interv dist. Uniform SCM linear SCM non-linear
9 (& (&) @ 1 332+ 7.09 42.7+1.43 34.9+2.29
N o “’;b) e e 3 72.24+4.04 T73.9+2.77 65.2+3.71
5 88.3+1.02 83.6+0.94 77.2+1.79
7 88.14+1.10 85.5+0.82 81.942.37
9 87.0+t1.33 84.8+1.49 81.1+2.53

 Mean correlated coefficient (MCC) with the true causal factors.

* Interventional causal representation learning with 0SS can identify true latent
causal factors, without compromising reconstruction quality.



What just happened?

* Single-node perfect and some imperfect interventions
* One fixed causal graph for entire observational data

* These assumptions do not apply to complex multi-domain datasets



The fixed causal graph assumption




General Multi-domain Causal Representation Learning
An invariance principle for causal representations

Domain 1 Domain 2
1 2
Flp,)1 = Flp}']

Distributional properties of a subset of latents is same between two domains



General Multi-domain Causal Representation Learning
An invariance principle for causal representations

 Multi-node imperfect interventions

* Distributional properties (e.g. support) of
iIntervened nodes and downstream

nodes (%/) change

» Rest of the nodes (&) are not impacted




General Multi-domain Causal Representation Learning

Input data Assm. on pz Assm. on g Identification

Observational zi L z;|u, u aux info. Diffeomorphism Perm & scale (Khemakhem et al.)
Multi do intvn/node Non-parametric Diffeomorphism ~ Comp-wise (Ahuja et al.)
Perfect (1-node) Linear Linear Comp-wise (Seigal et al.)

Perfect (1-node) Non-parametric Polynomial Comp-wise (Ahuja et al.)

Perfect (1-node) Non-parametric Diffeomorhic Comp-wise (Kugelgen et al.)
Imperfect (1-node) Non-parametric Linear Mix consistency (Varici et al.)
Imperfect (1-node) Non-parametric + ind support  Polynomial Block affine (Ahuja et al.)
Imperfect (1-node Linear Gaussian Diffeomorphism  Affine (Buchholz et al.

Imperfect (multi-node) Non-linear Polynomial Block affine (Theorem 3)

General multi-domain =~ Non-param, sup inv S Polynomial Block affine (Theorem 4)

General multi-domain  Non- invS Diffeomorphism I'“ identification (Theorem 5)

Counterfactual Non-parametric Diffeomorphism Comp-wise (Brehmer et al.)

[Ahuja, Mansouri, & W., 2023]



General Multi-domain Causal Representation Learning
Autoencoder with invariance penalty

* Algorithm (Autoencoder with invariance penalty)

= e fo = 2117| +2 Y, D] Pk )

JFk




Empirical Studies

g Domains (R%, RY)

Linear 2 (0.33 £0.01,0.46 + 0.03)

Linear 16 (0.97 + 0.00, 0.04 =+ 0.00)
Polynomial 2 (0.58 £ 0.02,0.07 £ 0.01)
Polynomial 16 (0.95 £ 0.00, 0.01 £ 0.00)
Ball-images 2 (0.73 £0.01,0.35 £ 0.02)
Ball-images 16 (0.82 4+ 0.02,0.20 £ 0.04)

g Domains (Accaigits s Reolor)
Unlabeled colored MNIST 2 (0.73 £ 0.02,0.73 £ 0.02)
Unlabeled colored MNIST 16 (0.74 £ 0.01,0.28 + 0.02)




Causal Inference with Unstructured Data

Switching Dynamical Systems

Reconstruction

Ground truth

State pasterior p(s¢|z;.7)

Ground truth

- 1.0
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0.0
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0.50
€t 0
Qv
<5 0.35
<E
5
O 2 0.20
Forward- backward Turning around Standing in front Double spin

Figure 9: Posterior probability of a salsa dancing sequence
of iMSM and KVAE (Fraccaro et al., 2017) along with

several patterns distinguished 1n the example.



Takeaways

» Causal inference with unstructured data requires identifying latent causal
factors first, a task known as causal representation learning

 The goal is to identify latent causal factors from unlabelled observational,
iInterventional, or multi-domain data.

 Causal factors are often correlated or causally connected. How to identify?
 Consider geometric signatures e.g. independence-of-support

* |dentify latent causal factors from observational, interventional, and general
multi-domain data with the independent or invariant support constraint.



Thank you!

* Y. Wang and M.l. Jordan
Desiderata for Representation Learning: A Causal Perspective
Journal of Machine Learning Research, 2024+
https://github.com/yixinwang/representation-causal-public

K. Ahuja, D. Mahajan, Y. Wang, and Y. Bengio
Interventional Causal Representation Learning
ICML 2023 (Oral)
https.//github.com/facebookresearch/CausalReplD

K. Ahuja, A. Mansouri, and Y. Wang
Multi-Domain Causal Representation Learning via Weak Distributional Invariances
AISTATS 2024
https://qithub.com/facebookresearch/MD-CRL



https://github.com/yixinwang/representation-causal-public
https://github.com/facebookresearch/CausalRepID

Extra slides



Affine ldentification

Reconstruction identity /o f(x) = x,Vx e X

(Theorem, Ahuja et al.)
g is an injective polynomial & Z has a non-empty interior.

Solve the reconstruction identity with the & as a polynomial

7=Az+c, VzE £



Affine ldentification

hof(x)=x
h(2) = 8(z)
1 1
Z Z
I z:® _ ZE®Z
2O®...®2 Z¥®“'®JZ
p times p times



Affine ldentification
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Why invariance works?
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Why invariance works?
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Why support invariance works?




Image Experiments Setup

« Uniform: Each coordinate of Ball 1 (z;, y;1) and Ball 2 (x9, y2) are sampled from
Uniform(0.1, 0.9).

« SCM (linear): The coordinates of Ball 1 (|, y) are sampled from Uniform(0.1, 0.9), which
are used to sample the coordinates of Ball 2 as follows:

Uniform(0.1,0.5) ifz; + 1 > 1.0
To ™~
’ Uniform(0.5,0.9) ifxz; + 131 < 1.0

| Uniform(0.5,0.9) ifz; 4y > 1.0
Y2 Uniform(0.1,0.5) ifz1 + 1y < 1.0

« SCM (non-linear): The coordinates of Ball 1 (x|, y;) are sampled from Uniform(0.1,0.9),
which are used to sample the coordinates of Ball 2 as follows:
Ty ~ Uniform(0.1,0.5) if 1.25 x (’rf + %) > 1.0
Uniform(0.5,0.9) if 1.25 x (z? + y?) < 1.0

Uniform(0.5,0.9) if 1.25 x (2?7 + y?) > 1.0
1 ~4
Y2 Uniform(0.1,0.5) if 1.256 x (2% + y%) < 1.0



ldentification via independent support
Why does independent support help?

* Independent support gives further coordinate-wise identification,
z = 1Az + ¢, 11 is permutation matrix and A is diagonal matrix.

» Why? Suppose we have two sets of representations (z;, z,) and (Z;, Z,)

« Polynomial decoder makes them linearly identifiable. Z; = a2, + a,,2,
I = 13y T A2y

e (21,2 and (Z;, Z,) cannot both have independent support when
a1, i, 4,1, >, are all nonzero.



ldentification via independent support
Why does independent support help?

e Why?
» Core step: When Z; = a2 + a22p, 2 = Gr(21 + 012

» (21,2,) and (Z,, Z,) cannot both have independent support when
a1, dyy, a1, Ay, are all nonzero.

» Intuition (example): 2, = z; + 25, 2o = 71 — 2, SUPP(Zy, 2p) = [1,2] X [0,2],

» The support of Z, depends on the value of Z;, violating independent support.

» supp(Z,|2; =4) = {0}, supp(z,|z; = 1) = {1}



Interventional Causal Representation Learning
Geometric Signatures lll: Perfect and imperfect interventions

 Data generating process:

+ Support independence under interventiononi Z;!=ZXZ? VjeS

B Support
4
Zy |
Z, Z, z, z
>
Zl 4 1 Zl VA |

Observational data Do interventional data Imperfect intervention Irpperfegt intervention
that induces independent support without independent support



Interventional Causal Representation Learning
Geometric Signatures lll: Perfect and imperfect interventions

* Algorithm:

e hof(x) =x,Vxe T U {U}zlﬁl" (L)Y reconstruction identity

A support of x underjﬂ”‘do intervention on z;

. 52" ](Clzn = 52" ](f) X 52" ,(,,?, Vme S§ pairwise independent support constraint

»

Observational data Do interventional data Imperfect i trv ntio Impe ft ntervention
that induc mdpdtpprtwthtdpdtpprt




Interventional Causal Representation Learning
Geometric Signatures lll: Perfect and imperfect interventions

 Theorem ([Ahuja, Mahajan, W., & Bengio, 2022]
Z, Z,
e Suppose
Z, Z,
. . . . = . . Imperfect intervention Imperfect intervention
* (1) the true mixing function g is an injective polynomial that induces independent support - without independent support

e (2) the support of latents Z has a non-empty interior

 (3) the intervened latent’s support is independent from the latents in &

* Then the intervened latent can be identified up to block-affine transformations



What just happened?

* Single-node perfect and some imperfect interventions
* One fixed DAG for entire observational data

* These assumptions do not apply to complex multi-domain datasets



One fixed DAG assumption




An Iinvariance principle for causal representations

 Multi-node imperfect interventions

* Distributional properties (e.g. support) of
Intervened nodes and downstream

nodes (%/) change

» Rest of the nodes (&) are not impacted




An Iinvariance principle for causal representations

Domain 1 Domain 2

Flp,)1 = Flp}”

Distributional properties of a subset of latents is same between two domains



Self-supervised learning: Instance-level invariance

A

p(x') = p(x°)

Subset of latents between two augmentations is same

A




Invariance Constrained Autoencoder

hof(x) =x,Vxe Reconstruction identity

F[pég] = F[pgg], Vr # s Invariance constraint



Identification under Multi-Node Intervention

 Data generating process

o qi(Pa(zi)> Vi€ [d]

x < g(z)



Identification under Multi-Node Intervention

 Theorem ([Ahuja, Mansouri, & W., 2023]

e Suppose
* (1) the true mixing function g is an injective polynomial

* (2) the support of latents £ has a non-empty interior

| . . log(d/o)
(3) each node undergoes interventions at least 7 times, 1 >

) -~ log(1/(1 — 1/2d))
« Then, wp 1 — 9, the un-stable (intervened) latent can be separated from stable (un-intervened) latents

» The algorithm returns representation Z = f(x) that achieves block-affine identification, Z¢ = Az + ¢



General Multi-domain Datasets

Domain 1 Domain 2

Digit color

Dlglt style 1

Flpy 1 = Flp;’]



Identification in General Multi-Domain Datasets

 Theorem ([Ahuja, Mansouri, & W., 2023]

e Suppose
* (1) the true mixing function g is an injective polynomial
* (2) the support of latents # has a non-empty interior
* (3) across domains, the stable latents & have invariant support

* (4) There exist two domains p, g such that foreachz € &£ (P) there exists a 7z € Z 9 such that z > 7z with
strict domination in components in % (for each orthant)

* Then, the un-stable (intervened) latent can be separated from stable (un-intervened) latents



Interventional Causal Representation Learning
Autoencoder with invariance penalty

* Algorithm (Autoencoder with invariance penalty)

E [Hh o f(x) — XH2] + 4 Z D(pé;,,pg,)

JFk



