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Stellar Formation

e

Stars form when the dense parts of a molecular cloud collapse
into a ball of plasma.
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Evolution of a Sun-like Star

FROTOSTAR BUN-LIKE STAR

BWARF
PLANETARY NEBLULA

@ Hydrogen fusion can last for millions or billions of years,
depending on the initial stellar mass.

@ When the Hydrogen in the core is depleted, the star may
fuse Helium into heavier elements

@ At the same time the star goes through dramatic physical
changes, growing and cooling into a red giant star.

@ Soon the star undergoes mass loss forming a planetary
nebula.

@ Eventually only the core is left, a white dwarf star.
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Planetary Nebula

Planetary Nebulae are the illuminated, expanding atmospheres of red
giants as they lose the bulk of their mass to become white dwarfs.
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Supernovae

Supernovae are dramatically exploding Giant Stars and may
result in neutron stars or black holes.
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Stellar Characteristics

FROTOSTAR BUN-LIKE STAR

Six Unknown Parameters Affect a Star's Appearance as it Ages
1. More massive stars are denser, hotter, bluer, and burn their
fuel much more quickly.
@ Composition also effects the color spectrum

2. “Metals” absorb more blue light.
3. Excess Helium at the core reduces the efficiency of the
nuclear reaction.

4. The spectrum of the star changes as the star ages.
5. Some light from a star is absorbed by interstellar material.
6. More distant stars are fainter.
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Data Collection

Photometric Magnitudes
@ To fit the parameters, we study light emitted by each star.
@ Using filters, we measure the luminosity of a star’s electro-
magnetic radiation in several wide wavelength bands.
@ Computationally-expensive, physics-based computer
models predict magnitudes given the six parameters.

GOAL: Use data to learn about the six stellar parameters.
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Stellar Clusters

@ Stellar Clusters are physical groups of stars formed at the
same time out of the same material.

@ Cluster stars have the same metallicity, helium abundance,
age, distance, and absorption.

@ We call these five common parameters cluster parameters.

@ Only the stars’ initial masses vary.

@ This significantly simplifies statistical analysis.
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Color Magnitude Diagrams

* Red Giants

brighter

Hertzsprung-Russell Diagrams

@ Apparent Magnitude vs
Magnitude Difference (Color).

@ |dentifies stars at different
stages of their lives.

@ Evolution of an HR diagram.

Apparent

fainter

White Dwarfs

hotter cooler

Apparent Magnitude Difference (Color)
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Basic Likelihood Function

The Stellar Evolution Model as Part of a Complex Likelihood

@ The computer model predicts observed magnitudes as a
function of mass, M;, and cluster parameters, O:

G(M;, ©)
@ We assume independent Gaussian errors with known
variances:
S| (x; — Gi(My, ©))?
Lmex)=1](]I ——op| - 52
i=1 \j=1 | \/270} Tij

@ We use the computer model as a component of a
principled statistical analysis.
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Binary Star Systems

@ Between 1/3 and 1/2 of
stars are actually
binary star systems.

@ Most are unresolved.

@ The luminosities of the
component stars sum.

@ Resulting offset on the CMD is informative for the masses.
@ The expected observed magnitudes for binaries are

—2.5logq (1 0-G(1.©)/25 4 O—G(M,z,e)/z.s] .

@ The “secondary masses” of single stars are zero.
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Field Stars

Field Stars appear in the field of view but are not part of cluster.

@ Their magnitudes do not follow the
pattern of the CMD.

@ More distant stars are dimmer and
below main sequence.

@ We use a mixture model.

@ Field star magnitudes are assumed
uniform over the range of the data.

David A. van Dyk Bayesian Astrostatistics: Part Il



Background Complex Posterior Dist’s - Stellar Evolution Example

Monte Carlo Integration
Markov Chains

Likelihood Function

@ The resulting Likelihood function is
L(M,©,Z|X) =

12[ 1 —Gj(M1,9) -G(M2.©)7)2
exp | ——5 x,‘j+2A5Iog10 10 25 + 10 2.5
i=1 j=1 7"73 205

+ (1 = Z)peea(Xi) |,

::]2

where Z; is an indicator for cluster membership for star /.
@ We embed the computer models into a principled
Likelihood-based analysis, rather than using “chi-by-eye”.

Citations:

o van Dyk, D. A., DeGennaro, S., Stein, N., Jeffreys, W. H., von Hippel, T. Statistical Analysis of Stellar
Evolution. The Annals of Applied Stat/stlcs 3, 117-143, 2009
Stenning, Wagner-Kaiser, Robinson, van Dyk, von Hippel, Sarajedini, Stein, Bayesian Analysis of Stellar
Populations in Galactic Globular Clusters I: Statistical and Computational Methods. ApJ, 826, 41, 2016
Si, van Dyk, von Hippel, Robinson, Jeffery, and Stenning Bayesian Hierarchical Modelling of Initial-Final
Mass Relations Across Star Clusters. Monthly Notices of the Royal Astronomical Society, 480, 1300, 2018
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Prior Distributions

We use both informative and non-informative prior distributions:

@ Aninformative truncated Gaussian is used on log mass,
representing the population distribution of stellar masses.

@ The ratio of the smaller and larger mass is uniform.

@ For well studied clusters there are informative star-by-star
priors on cluster membership.

@ A mildly informative population-based prior is used for age.

@ The remaining cluster parameters must be considered on
a case-by-case basis.

Use sophisticated computational techniques to evaluate
the computer model and to fit the resulting model.

David A. van Dyk Bayesian Astrostatistics: Part Il



Background

Complex Posterior Dist’s - Stellar Evolution Example
Monte Carlo Integration
Markov Chains

Complex Posterior Distributions
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Highly non-linear relationship among stellar parameters.
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Complex Posterior Distributions

Mass

Highly non-linear relationships among stellar parameters.
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Complex Posterior Distributions
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Complex Posterior Distributions
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Complex Posterior Distributions
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Complex Posterior Distributions

Jouaysod

energy of photon 2 (keV)

energy of photon 1 (keV)
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Simulating from the Posterior

@ We can simulate or sample from a distribution to learn
about its contours.

@ With the sample alone, we can learn about the posterior.
@ Here, Y ~ Poisson(Ag + Ag) and Y ~ Poisson(cAg).

prior posterior joint posterior
with flat prior

@
© <
o
<
5 [a:]
e €
o s
o~ S
S
o o
o o
0 2 4 6 8 0 2 4 6 8 10 0 2 4 6 8
lamS lamS lamS

David A. van Dyk Bayesian Astrostatistics: Part Il



Background Complex Posterior Dist’s - Stellar Evolution Example

Monte Carlo Integration
Markov Chains

Using Simulation to Evaluate Integrals

Suppose we want to compute

| = E[g(6)] = / 9(0)f(6)a,

where f(#) is a probability density function.
If we have a sample

0 .00 ~ £(6),

we can estimate / with

. 1
/n = E Zg(g(f)),
=1

In this way we can compute means, variances, and the
probabilities of intervals.
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We Need to Obtain a Sample

Our primary goal:

Develop methods to obtain a sample from a
distribution

@ The sample may be independent or dependent.
@ Markov chains can be used to obtain a dependent sample.

@ In a Bayesian context, we typically aim to sample the
posterior distribution.

We first discuss an independent method:
Rejection Sampling & The Grid Method
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Rejection Sampling

Suppose we cannot sample f(¢) directly, but can find g(#) with
f(0) < Mg(#)

for some M.
@ Sample 4 ~ g(#h).
@ Sample u ~ Unif(0,1).
QIf

u< N’;g?@) i.e., if uMg(f) < £(f)

accept §: 6() = 0.
Otherwise reject 6 and return to step 1.

How do we compute M?

David A. van Dyk Bayesian Astrostatistics: Part Il



Background Complex Posterior Dist’s - Stellar Evolution Example

Monte Carlo Integration
Markov Chains

Rejection Sampling

Consider the distribution:

f(theta)

0.00 0.05 0.10 0.15 0.20 0.25

theta

We must bound f(¢) with some unnormalized density, Mg(0).
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Rejection Sampling
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@ Imagine that we sample uniformly in the red rectangle:

0 ~ g(0) and y = uMg(6)
@ Accept samples that fall below the dashed density function.
How can we reduce the wait for acceptance??
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Rejection Sampling
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How can we reduce the wait for acceptance??

Improve g(0) as an approximation to f(0)!!
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The Grid Method

The Grid method is a brute force / last resort method to sample
from a density:

f(theta)

0.00 0.05 0.10 0.15 0.20 0.25

theta
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The Grid Method

@ Evaluate the density on a grid.

© Compute the areas of the resulting trapezoids.

© Sample from a multinomial distribution with probabilities
proportional to the areas.

f(theta)

0.00 0.05 0.10 0.15 0.20 0.25

theta

How can we improve the approximation??
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The Grid Method
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How can we improve the approximation??
Use a finer grid!!

Limitations?
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What is a Markov Chain?

Definition
A Markov chain is a sequence of random variables,

9 o) 9@

such that

p(d®1et=1 9(t=2) " 90y = p(g(D|gt=1),

A Markov chain is generally constructed via
9 = p(et=1 ylt=1)

with UM, U@ .. independent.
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What is a Stationary Distribution?

Definition
A stationary distribution is any distribution f(x) such that

£ = / (0060171 gl

If we
@ have a sample from the stationary dist'n and
© update the Markov chain,
then the next iterate also follows the stationary dist’'n.

In practice we cannot obtain even one sample
for the stationary dist’n.
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What does a Markov Chain at Stationarity Deliver?

Under regularity conditions, the density at iteration t,

FD(919©) - F(#) and Zh(«9 — Ef[h(0)]

[Where F is the cummu/at/ve d/str/butwon function with density f.]

@ The Markov chain converges to its stationary distribution.

@ After sufficient burn-in, we treat {60, t = Ny,...,N} as a
correlated sample from the stationary distribution.

@ This is an approximation: Use MCMC samples with care!

@ Convergence diagnostics are critical.

We aim to find a Markov Chain with Stationary
Dist’n equal to the Target Dist'n.
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Basic MCMC Jumping Rules

The Metropolis Sampler

Metropolis Sampler

Draw 0(%) from some starting distribution.
Fort=1,2,3,...
Sample: 6* from J;(*6(=1)

: 0
Compute: r = p(‘(’f(,ﬁ%")y)

Set: o) — 0* with probability min(r, 1)
' 161 otherwise

Note
@ J; must be symmetric: J;(0*]0(=1)) = Jy(9(=1)|6*).
o If p(6*|y) > p(6~y), jump!
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Basic MCMC Jumping Rules

The Random Walk Jumping Rule

Typical choices of Ji(6*|0(—1)
@ Unif (0= — k, 9(t=1) 1 k)
@ Normal (0= k)
o (011 k)

J: may change, but may not depend on the history of the chain.

h
0.00 0.05 010 015 020 0.25

theta

How should we choose k? Replace / with M? How?
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An Example: High-Energy Spectral Analysis

A simplified model for high-energy spectral analysis.

@ Model:
Consider a perfect detector:

@ 1000 energy bins, equally spaced from 0.3keV to 7.0keV,
@ Y, ~ Poisson (aEi_5> , With 6 = (o, 8),

© E is the energy, and

Q (o, 8) "< Unif(0,100).

@ The Sampler:
We use a Gaussian Jumping Rule,

e centered at the current sample, 6(9)
e with standard deviations equal 0.08 and correlation zero.
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Simulated Data

2288 counts were simulated with o = 5.0 and 5 = 1.69.

red curve——expected counts

counts
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Markov Chain Trace Plots

Time Series Plot for Metropolis Draws
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iteration

Chains “stick” at a particular draw when proposals are rejected.
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The Joint Posterior Distribution

Scatter Plot of Posterior Distribution
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Marginal Posterior Dist'n of the Normalization

Autocorrelation for alpha Hist of 500 Draws excluding Burn—in
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E(a|Y) ~ 5.13, SD(a|Y) ~ 0.11, and a 95% Cl is (4.92,5.41)

... how does this compare with the true value? bias?
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Marginal Posterior Dist'n of Power Law Param

Autocorrelation for beta Hist of 500 Draws excluding Burn—in
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E(B|Y) ~ 1.71, SD(8|Y) ~ 0.03, and a 95% Cl is (1.65,1.76)

... how does this compare with the true value? bias?
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The Metropolis-Hastings Sampler

Metropolis-Hastings Sampler

Draw 69 from some starting distribution.
Fort=1,2,3,...
Sample: 6* from Jy(6*6(t=1)

) 0% Ji(0* 9(1‘*1)
Compute: r = p(’fg((,_L{|)y/)/t5,((9l(z—1)|(3*)

Set: 9B — 0* with probability min(r, 1)
' 611 otherwise

Note
@ A more generic jumping rule: J; may be any jumping rule, it
needn’t be symmetric.
@ The updated r corrects for bias in the jumping rule.
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The Independence Sampler

Use an approximation to the posterior as the jumping rule:

Ji = Normaly(MAP estimate, Curvature-based Variance Matrix).

MAP estimate = argmax,p(¢|y)

o? B
Variance ~ ~ 5050 log p(6]Y)

Note: J;(6*]6(=")) does not depend on A=),

David A. van Dyk Bayesian Astrostatistics: Part Il



Metropolis Sampler
Metropolis Hastings Sampler
Basic Theory

Basic MCMC Jumping Rules

The Independence Sampler

The Normal Approximation may not be adequate.
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@ We can inflate the variance.
@ We can use a heavy tailed distribution, e.g., lorentzian or ¢.
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Example of Independence Sampler

A simplified model for high-energy spectral analysis.
@ We use the same model and simulated data.

@ This is a simple loglinear model,
a special case of a Generalized Linear Model

Y; ~ Poisson (\;) with log(}\;) = log(«) — S log(E;).

@ The model can be fit with the g1m function in R:

> glm.fit = glm( Y~I(-log(E)), family=poisson(link="log") )
> glm.fit$Scoef ###4# best fit of (log(alpha), beta)
> vcov( glm.fit ) #### variance-covariance matrix

@ Returns MLE of (log(«), 5) and variance-covariance matrix.
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Example of Independence Sampler

@ Alternatively, we can fit («, 3) directly with a general
(but less stable) mode finder.
@ Requires coding likelihood, specifing starting values, etc.
@ Choose parameterization to improve Gaussian approx.
e MLE is invariant to transformations.
e Variance matrix of transform is computed via delta method.
@ We use the general mode finder:
Ji = Normal>(MAP est, Curvature-based Variance Matrix).
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Markov Chain Trace Plots

Time Series Plot for Metropolis Hastings Draws
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Very little “sticking” here: acceptance rate is 98.8%.
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Marginal Posterior Dist'n of the Normalization

Autocorrelation for alpha Hist of 500 Draws excluding Burn—in
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Autocorrelation is essentially zero: nearly independent sample!!
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Marginal Posterior Dist'n of Power Law Param

Autocorrelation for beta Hist of 500 Draws excluding Burn—in
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This result depends critically on access to a very good
approximation to the posterior distribution.
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Convergence to Stationarity

Consider a finite state space S with arbitrary elements j/ and ;.
o Let p;(t) = Pr(6®) = j|o©) = ).
@ Ergodic Theorem: If a Markov chain is positive recurrent

and aperiodic then its stationary distribution is the unique
distribution 7() such that

Zp,, 7(j) forall jand t > 0.

In this case, we say the Markov chain is ergodic and:
@ pj(t) = n(j)ast — oo forall i and j.

r lzn:h((a(’))mzﬁ(h(e)) =1
t=1
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Convergence to Stationarity

Definitions:
@ Chainis irreducible if for all i, j there is t with p;(t) > 0.
Let 7; be the time of first return, min{t > 0 : #() = j](0) = j}.
@ Chainis recurrent if Pr[rj; < oo] = 1 for all .
© Chain is positive recurrent if E[r;] < oo for all i.

Fact: Irreducible chain with a stationary dist’n is pos recurrent.

So we need our chain to
@ be irreducible,
@ be aperiodic, and
© have the posterior distribution as a stationary distribution.
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Diagnosing Convergence
Choosing a Jumping Rule

Practical Challenges and Advice Transformations and Multiple Modes

Has this Chain Converged?

1.0

psi
0.6

0.4

0.2

0.0
1

iteration

Image credit: Gelman (1995) In “MCMC in Practice” (Editors: Gilks, Richardson, and Spiegelhalter).

avid A. van Dyk Bayesi



Diagnosing Convergence
Choosing a Jumping Rule
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Has this Chain Converged?

0.6
6

psi
psi

L
0.0

iteration iteration

Image credit: Gelman (1995) In “MCMC in Practice” (Editors: Gilks, Richardson, and Spiegelhalter).

Comparing multiple chains can be informative!
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Using Multiple Chains

chain 1 chain 2 chain 3
© [{e} ©
< < <
= = =
R ' I R 8w
o o l o
0 10000 20000 0 10000 20000
iteration

iteration

0

10000 20000
iteration

@ Compare results of multiple chains to check convergence.

@ Start the chains from distant points in parameter space.
@ Run until they appear to give similar results

e ... or they find different solutions (multiple modes).

David A. van Dyk
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The Gelman and Rubin “R hat” Statistic
Consider M chains of length N: {¢)pm,n=1,... N}.

M
N - -
ZWZWJm*
m—1
;M N
= > 5, where s, = Z Vnm —

m=1

Two estimates of Var(y | Y):
@ W: under estimate of Var(@/) | Y) for any finite N.
Q var' (v | Y)=NAW+ LB over estimate of Var(y | Y).

-+
A Y .
=y 1T (;f; 1Y) 1 1 asthe chains converge.

Compute with coda package in R: http://cran.r-project.org/web/packages/coda/index.html
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The Split “R hat” Statistic

g 'l\\“*ﬁi.’«‘m‘I\ﬂ“ﬁ"l’l“”‘v\"\}‘\ﬁ'\% Y"‘W‘W WW
\ N\ 'ﬁ\' ‘

05 1.0 15

Simulation
-2 -1 0
Simulation

-0.5

‘\lﬁM‘MH M W

0 200 400 600 800 1000 0 200 400 600 800 1000
lteration Iteration
[Image Credit: Gelman et al., Bayesian Data Analysis (2013), Fig 11.3.]

-3

@ | ¥ ¢
T

In Practice:
@ Run several chains (e.g., 4) with dispersed starting values.
@ Discard the first half of each — for burn in.

@ Split the second half of each into two (e.g., for a total of
M = 8 = 2 x 4 chains, length is 25% of full run).

@ Splitting helps identify problems like the right panel.
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Choice of Jumping Rule with Random Walk Metropolis

Spectral Analysis: effect of jumping rule on power law parameter

sigma = 0.005, 0.08, 0.4

p acceptance rate=87.5%

o~ Lag one autocorrelation=0.98
3N
2o
B

@

o

- [ 500 1000 1500

iteration

p acceptance rate=31.6%

~ Lag one autocorrelation=0.66
N
F

@

- [ 500 1000 500

iteration
acceptance rate=3.1%

o tag one autocorrelation=0.96
3
3
i

<

[ 500 1000 1500
iteration
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Higher Acceptance Rate is not Always Better!

Sampies
162 166 170 174

Sampes
1.80

170

1.60

Sanpes
1.80

170

1.60

sigma = 0.005, 0.08, 0.4

500 1000 500 2000
iteration

o, g e el i

500 1000 1500 2000
iteration

Y| (O o o 1 M | O R T

500 1000 1560 2000
iteration

Aim for 20% (vectors) - 40% (scalars) acceptance rate
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Statistical Inference and Effective Sample Size

@ Point Estimate: 1; = W > ¢(t) (estimate of E()|data)!)
@ At stationarity:

lim MN p)=|1+2

Jim MN var (¢.) ( + gpt) var(v | y)
@ p; = lag t autocorrelation

e If draws were indep't, var (+..) would be gvar(+ | y).
@ Thus the effective sample size is

he MN
R
@ Autocorrelations computed from chains (without burnin).

@ The infinite sum is truncated when p; < 0.05 or first
becomes negative.

...all computed with coda in R.
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lllustration of the Effective Sample Size

Sample from N(0, 1)
with random walk Metropolis with J; = N(6(9, 7).

What is the Effective Sample Size here? and ¢?

Markov Chain
0
|

0 200 400 600 800 1000

iteration
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lllustration of the Effective Sample Size

What is the Effective Sample Size here? and ¢?

Markov Chain
0
|

-2
|

-3
|

0 200 400 600 800 1000

iteration
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lllustration of the Effective Sample Size

What is the Effective Sample Size here? and ¢?

Markov Chain
0
|

-2
|

-3
|

0 200 400 600 800 1000

iteration
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lllustration of the Effective Sample Size

What is the Effective Sample Size here? and ¢?

Markov Chain
0
|

-2
|

-3
|

0 200 400 600 800 1000

iteration
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lllustration of the Effective Sample Size

What is the Effective Sample Size here? and ?

Marko Chain

Markov Chain
a2 a4 0 1 2 3

T T
o 200 400 600 00 1000 0 20 400 600 800 1000

Markov Chain

2 2 1 0 1 2 3

Markov Ch
4 2 1 0 1 2 3
L

0 200 400 600 800 1000 o 200 400 600 800 1000
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lllustration of the Effective Sample Size

Effective Sample = 20; o = 0.25. Effective Sample = 75; o = 10.

Markov Ch
2 2 1 0 1 2 3

Markov Chi
4 2 1 0 1 2 3
L

T T T T T
o 200 400 600 800 1000 0 20 400 600 800 1000

Effective Sample = 100; o = 1. Effective Sample = 216; 0 = 3.5.

Bayesian Astrostatistics: Part Il



Diagnosing Convergence
Choosing a Jumping Rule

Practical Challenges and Advice Transformations and Multiple Modes

Lag One Autocorrelation

Small Jumps versus Low Acceptance Rates

1.0

0.9

lag 1 autocorrelation
0.8
|

0.7
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Effective Sample Size

Balancing the Trade-Off

effective sample size

50
|
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Acceptance Rate

Bigger is not always Better!!

1.0

0.4 0.6 0.8
|

acceptance rate

0.2

log(sigma)

High acceptance rates only come with small steps!!
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Finding the Optimal Acceptance Rate

o
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w o
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$
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o
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log(sigma)
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Random Walk Metropolis with High Correlation

A whole new set of issues arise in higher dimensions...

Tradeoff between high autocorrelation and high rejection rate:
@ more acute with high posterior correlations
@ more acute with high dimensional parameter

o -
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Random Walk Metropolis with High Correlation

In principle we can use a correlated jumping rule, but
@ the desired correlation may vary, and
@ is often difficult to compute in advance.

™

N ....’\..;.
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Random Walk Metropolis with High Correlation

What random walk jumping rule would you use here?

-3 -2 -1 0 1 2 3

Remember: you don't get to see the distribution in advance!
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Parameters on Different Scales

Random Walk Metropolis for Spectral Analysis:

Scatter Plot of Posterior Distribution Autocorrelation for alpha
<
8
® |
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w0
2
- © |
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L
= 2
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° = |
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N
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2
o _rrmnmnnmnmnmnnrn i nn nn i nrinamn -
=
s ; . . . . ;
~ a8 50 5.2 54 56 0 20 40 60 80 100

a Lag




Diagnosing Convergence
Choosing a Jumping Rule
Transformations and Multiple Modes

Practical Challenges and Advice

Parameters on Different Scales

Consider the Scales of o and £:

Scatter Plot of Posterior Distribution Scatter Plot of Posterior Distribution

3

=

©

2

4

a

°

2

<

o

3 |

3

8

- as 5.0 5.2 5.4 56 48 50 52 5.4 56

a a

avid A. van Dyk Bayesi



Practical Challenges and Advice

Improved Convergence

Original Jumping Rule:

ACF

1.0

0.8

0.6

0.4

0.2

0.0

Autocorrelation for alpha

Diagnosing Convergence
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Hist of 500 Draws excluding Burn—in

—- Posterior Density

4.8 5.0 52

Bayesian Astrostatistics
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Improved Convergence
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Improved Jumping Rule:

Autocorrelation for alpha

Hist of 500 Draws excluding Burn—in

o
=7 0
g d <4 - Posterior Density
©
o ™
5
<
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Parameters on Different Scales

With Jumping Rule: Norm(#(=") kM), or better ty(6(~ "), kM).

Try:
@ Using the variance-covariance matrix from a standard
fitted model for M

... at least when standard mode-based model-fitting software is available.

© Adaptive methods that allow the jumping rule to evolve on
the fly.’

Always: Adjust k and/or M to aim for acceptance rate of

~20% (multivariate update) or ~40% (univariate update).

! E.g., “Optimal proposal distributions and adaptive MCMC” by JS Rosenthal in Handbook of Markov Chain
Monte Carlo (CRC Press, 2011).
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Transforming to Normality

Parameter transformations can greatly improve MCMC.
Recall the Independence Sampler:

< Q
(S @
o
o i
° 8
< < 3
T 3z ©
£ o s
= o 7 = B
o
S
— S
24
o | 8 J
S T T T T T T 1 S T T T T T T 1
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
theta theta

The normal approximation is not as good as we might hope...
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Transforming to Normality

But if we use the square root of 6:

~
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Transforming to Normality

And...

©
4 p g
o
&
o
©
- g o 7
T
£
- & 4 g
g s 3 <
£ 5 ©
- b 2
g g
14 o~
o s o
=3 o
S >
S T T T T T T 1 o T T T T T T 1
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
theta sqrt(theta)

The normal approximation is much improved!
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Transforming to Normality

Working with with Gaussian or symmetric distributions leads to
more efficient Metropolis and Metropolis Hastings Samplers.

General Strategy:
@ Transform to the Real Line.
@ Take the log of positive parameters.
If the log is “too strong”, try square root.
@ Probabilities can be transformed via the logit transform:

log(p/(1 — p))-

More complex transformations for other quantities.
Try out various transformations using an initial MCMC run.
Statistical advantages to using normalizing transforms.
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Removing Linear Correlations

Linear transformations can remove linear correlations
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Removing Linear Correlations

... and can help with non-linear correlations.
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Multiple Modes

@ Scientific meaning of
multiple modes.

@ Do not focus only onthe |
biggest mode!

@ “Important” modes. " x

@ Challenging for
Bayesian and
Frequentist methods.

@ Consider Metropolis & "1
Metropolis Hastings. %
@ Value of excess i
dispersion and multiple
starting values. G 5 0 ; i
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Multiple Modes

@ Use a mode finder to “map out” the posterior distribution.

@ Design a jumping rule that accounts for all of the modes.
@ Run separate chains for each mode.

© Use one of several sophisticated methods tailored for
multiple modes.
@ Adaptive Metropolis Hastings. Jumping rule adapts when
new modes are found (van Dyk & Park, MCMC Hdbk 2011).
@ Parallel Tempering.
© Nested Sampling (Skilling, 2006, Bayesian Analysis)
@ Many other specialized methods.

David A. van Dyk Bayesian Astrostatistics: Part Il
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Outline

e Gibbs Sampler and Extended Examples
@ The Gibbs Sampler
@ Example: Calibration Uncertainty
@ Example: Stellar Evolution and Dynamic Transformations
@ A Recommended Strategy
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Example: Stellar Evolution and Dynamic Transformations
Gibbs Sampler and Extended Examples A Recommended Strategy

Breaking a Complex Problem into Simpler Pieces

@ Ideally we sample directly from p(0|Y’) without Metropolis.
@ This may not work in complex problems.
@ BUT in some cases we can split = (64, 62) so that

p(61102, Y) and p(62(01, Y)

are both easy to sample although p(6|Y) is not.

Two-Step Gibbs Sampler,

Starting with some 69, for t = 1,2,3, ...
Draw: eﬁ’) ~ p(04 \9&’*1), Y)
Draw: 65 ~ p(82/64", Y)

David A. van Dyk Bayesian Astrostatistics: Part Il
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Gibbs Sampler and Extended Examples

An Example

Recall Simple Spectral Model: Y; ~ Poisson (aEi_’B) .
Using p(a, 8) o< 1,

n
_[qE"P — g
p(olY) o [[e 5 aE Y
i=1

n
_ e oYXl E P YL Y —BY;
e i=1 =i pé=i=1 IHE’,
=1

So that
p(a‘ﬁa Y) 0.6 eia 27:1 Eiiﬂa27:1 YI

n n
= Gamma ZY,-—{—L ZEFB
i=1 i=1

David A. van Dyk
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Embedding Other Samplers within Gibbs

In this case p(B|a, Y) is not a standard distribution:

n
p(Blos, Y) o e X £’ H E AV
i=1

@ We can use a Metropolis or Metropolis-Hastings step to
update g within the Gibbs sampler.

@ The result is known as Metropolis within Gibbs Sampler.

@ Advantage: Metropolis tends to preform poorly in high
dimensions. Gibbs reduces the dimension.

@ Disadvantage: Case-by-case probabilistic calculations.
(But case-by-case algorithmic development and tuning always helps)

David A. van Dyk Bayesian Astrostatistics: Part Il
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When Will Gibbs Sampling Work Well?
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When Will Gibbs Sampling Work Poorly?

N -] WWMWM

N~ "7

— - T T T T T
> o

-1

-3 -2
1 1
ACF
00 02 04 06 08 L0
|

Lag

autocorrelation = 0.998, effective sample size =5

High Posterior Correlations are Always Problematic.
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Multiple Modes

) S\ How will the Gibbs
- Sampler Handle
Multiple modes?
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The General Gibbs Sampler

@ In general we break 6 into P subvectors 6 = (64, ...,0p).
© The Complete Conditional Distributions are given by

P(Oplb1,...,0p-1,0p41,...,0p,Y), forp=1,.... P

Gibbs Sampler

Starting with some (9, for t =1,2,3, ...
Draw 1: 6{ ~ p(64]68",...,087" y)

Draw p: 65 ~ p(dpl6%",..., 00,6070, . 68~ )

Draw P: 69 ~ p(9p/6%",...,69 | Y)

David A. van Dyk Bayesian Astrostatistics: Part Il
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Example: Calibration Uncertainty
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Calibration Products

@ Analysis is highly dependent on Calibration Products:
o Effective area records sensitivity as a function of energy
e Energy redistribution matrix can vary with energy/location
e Point Spread Functions can vary with energy and location
e Exposure Map shows how effective area varies in an image
@ Here we focus on uncertainty in the effective area.

1
Elev]

A CHANDRA effective area.

100000 2000
EGERT exposure map
Sample Chandra psf's (area x time)
(Karovska et al., ADASS X)
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Derivation of Calibration Products

@ Prelaunch ground-based and -
post-launch space-based H
empirical assessments.

@ Complex computer models of
subassembly components. c

@ Calibration scientists provide a
sample representing uncertainty

@ Calibration Sample is typically of
size ~ 1000.

@ This is a sample from the prior
distribution for A.

E [keV]

50

0

default subtracted effective area (cm?)

-50

E [keV]
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Example: Calibration Uncertainty

We wish to incorporate uncertainty represented in Calibration
sample into a Bayesian Analysis.

@ PyBLoCXS (Python Bayesian Low Count X-ray Spectral):
provides a MCMC output for spectral analysis with known
calibration products.

@ Can we leverage PyBLoCXS for calibration uncertainty?
@ Gibbs Sampler:

Draw 1: Update A (effective area) given 0 (parameter).
Draw 2: Update 6 given A with PyBLoCXS.

Power of Gibbs Sampling: breaks a problem into easier parts.

David A. van Dyk Bayesian Astrostatistics: Part Il
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Two Possible Models

We consider inference under:
A PRAGMATIC BAYESIAN MODEL: mqg(A,0) = p(A)p(|A,Y).
THE FULLY BAYESIAN POSTERIOR: w(A,0) = p(A|Y)p(0|A,Y).

Concerns:
Statistical Fully Bayesian model is “correct”.

Cultural Astronomers have concerns about letting the
current data influence calibration products.

Computational Both models pose challenges,
but pragmatic Bayesian is easier to fit.

Practical How different are p(A) and p(A|Y)?

David A. van Dyk Bayesian Astrostatistics: Part Il
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How do we draw A?

We have only a calibration sample, not a formal model.

We use Principal Component Analysis to represent uncertainly:

m
A~A0+5+Zejrjvj,
j=1
Ap: default effective area,
d: mean deviation from A,
r;and v;: first m principle component eigenvalues & vectors,
g;. independent standard normal deviations.

Effectively, we are placing a degenerate MV Normal prior on A.

Capture 95% of variability with m = 6 — 9.

David A. van Dyk Bayesian Astrostatistics: Part Il
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Gibbs Samplesr for Calibration Uncertainty

An MH within Gibbs Sampler (Fully Bayes):
DRAW 1: Update e via MH with limiting dist'n p(e|f, Y)
DRAW 2: Update 6 via MH with limiting dist'n p(¢|e, Y)

Fully Bayesian Approach:
@ DRAw 1: Gaussian Metropolis jumping rule centered at €.
@ DRAW 2: pyBLoCXS

Pragmatic Bayesian Approach:
@ Replace Draw 1 with a sample from prior distribution on A.

David A. van Dyk Bayesian Astrostatistics: Part Il
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Sampling From the Full Posterior

Default Effective Area Pragmatic Bayes Fully Bayes

< < <

(=3 (=3 o

N M N N

@ - @ @

o o

S . S S

o~ N o~

© ©o ©

o 4 o 4 o 4

— T T — T T T — T T T

0.90 0.95 1.00 1.05 0.90 0.95 1.00 1.05 0.90 0.95 1.00 1.05
0, 0, 0,

#1 = normalization, 6> = power law param, purple bullet = truth

Citations:

Lee, Kashyap, van Dyk, Connors, Drake, Izem, Meng, Min, et al. (2011). Accounting for Calibration
Uncertainties in X-ray Analysis: Effective Areas in Spectral Fitting. The Astrophysical Journal, 731, 126.
Xu, van Dyk, Kashyap, Siemiginowska, Connors, Drake, Meng, et al. (2014). A Fully Bayesian for Jointly
Fitting Instrumental Calibration and X-ray Spectral Models. The Astrophysical Journal, to appear.

Chen, Meng, Wang, van Dyk, Marshall, and Kashyap (2019). Calibration Concordance for Astronomical
Instruments via Multiplicative Shrinkage. Journal of the American Statistical Association, 114, 1018-1037.
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Example: Transformations are Key

Fitting Computer Models for Stellar Evolution
@ A complex computer model predicts observed photometric
magnitudes of a stellar cluster as a function of

M;: stellar masses, and
©: cluster composition, age, distance, and

absorption:
G(M;, ©)
@ We assume indep Gaussian errors with known variances:
S| (x5~ G(My, ©))?

exp

Lo(M,0|X) = —_—
° E E 1/27r0§

2
20,-/-
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Stellar Evolution: MCMC Strategy

Metropolis within Gibbs Sampling

@ 3N + 5 parameters, none with closed form update.

@ Strong posterior correlations among the parameters.
Strong Linear and Non-Linear Correlations Among Parameters

@ Static and/or dynamic (power) transformations remove
non-linear relationships.

@ A series of preliminary runs is used to evaluate and
remove linear correlations.

@ We tune a linear transformation to the correlations of the
posterior distribution on the fly.

@ Results in a dramatic improvement in mixing.
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Gibbs Sampler and Extended Examples A Recommended Strategy

Dynamic transformations
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A toy example:
@ Initial Gibbs run shows high autocorrelation, panel 1.
Q Fity = a + fx andtransfrom Z = Y — 4 — 3 X.
© Rerun Gibbs, but sampling p(X|Z) and p(Z|X), panel 2.
© Transform back to X, Y, panel 3.
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Results for Toy Example
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A Recommended Strategy
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Gibbs Sampler and Extended Examples A Recommended Strategy

Results for Stellar Evolution Model

Initial Burn—in Period
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After Dynamic Transformations
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Gibbs Sampler and Extended Examples A Recommended Strategy

Overview of Recommended Strategy for MCMC

@ Start with a crude approximation to the posterior
distribution, perhaps using a mode finder.

@ Use the approximation to setup the jumping rule of an
initial sampler (e.g., Gibbs, MH, etc.): update one
parameter at a time or update parameters in batches.

© Use Gibbs draws for closed form complete conditionals.

© Use metropolis jumps if complete conditional is not in
closed form.

@ Run with multiple chains

© After an initial run, update the jumping rule using the
variance-covariance matrix of the initial sample, rescaling
so that acceptance rates are near 20% (for vector updates)
or 40% (for single parameter updates).
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Gibbs Sampler and Extended Examples A Recommended Strategy

Overview of Recommended Strategy- Con’t

@ To improve convergence, use transformations so that
parameters are approximately independent and/or
approximately Gaussian.

© Check for convergence using multiple chains.

© Compute effective sample size to be sure you have
sufficiently long chains.

@ Compare inference based on crude approximation and
MCMC. If they are not similar, check for errors before
believing the results of the MCMC.

David A. van Dyk Bayesian Astrostatistics: Part Il



	Background
	Complex Posterior Dist's - Stellar Evolution Example
	Monte Carlo Integration
	Markov Chains

	Basic MCMC Jumping Rules
	Metropolis Sampler
	Metropolis Hastings Sampler
	Basic Theory

	Practical Challenges and Advice
	Diagnosing Convergence
	Choosing a Jumping Rule
	Transformations and Multiple Modes

	Gibbs Sampler and Extended Examples
	The Gibbs Sampler
	Example: Calibration Uncertainty
	Example: Stellar Evolution and Dynamic Transformations
	A Recommended Strategy


	anm0: 


