function findex,u,v ;+ ; ROUTINE: findex ; ; PURPOSE: Compute "floating point index" into a table using binary ; search. The resulting output may be used with INTERPOLATE. ; ; USEAGE: result = findex(u,v) ; ; INPUT: ; u a monitically increasing or decreasing 1-D grid ; v a scalor, or array of values ; ; OUTPUT: ; result Floating point index. Integer part of RESULT(i) gives ; the index into to U such that V(i) is between ; U(RESULT(i)) and U(RESULT(i)+1). The fractional part ; is the weighting factor ; ; V(i)-U(RESULT(i)) ; --------------------- ; U(RESULT(i)+1)-U(RESULT(i)) ; ; ; DISCUSSION: ; This routine is used to expedite one dimensional ; interpolation on irregular 1-d grids. Using this routine ; with INTERPOLATE is much faster then IDL's INTERPOL ; procedure because it uses a binary instead of linear ; search algorithm. The speedup is even more dramatic when ; the same independent variable (V) and grid (U) are used ; for several dependent variable interpolations. ; ; ; EXAMPLE: ; ;; In this example I found the FINDEX + INTERPOLATE combination ;; to be about 60 times faster then INTERPOL. ; ; u=randomu(iseed,200000) & u=u(sort(u)) ; v=randomu(iseed,10) & v=v(sort(v)) ; y=randomu(iseed,200000) & y=y(sort(y)) ; ; t=systime(1) & y1=interpolate(y,findex(u,v)) & print,systime(1)-t ; t=systime(1) & y2=interpol(y,u,v) & print,systime(1)-t ; print,f='(3(a,10f7.4/))','findex: ',y1,'interpol: ',y2,'diff: ',y1-y2 ; ; AUTHOR: Paul Ricchiazzi 21 Feb 97 ; Institute for Computational Earth System Science ; University of California, Santa Barbara ; paul@icess.ucsb.edu ; ; REVISIONS: ; ;- ; nu=n_elements(u) nv=n_elements(v) us=u-shift(u,+1) us=us(1:*) umx=max(us,min=umn) if umx gt 0 and umn lt 0 then message,'u must be monotonic' if umx gt 0 then inc=1 else inc=0 maxcomp=fix(alog(float(nu))/alog(2.)+.5) ; maxcomp = maximum number of binary search iteratios jlim=lonarr(2,nv) jlim(0,*)=0 ; array of lower limits jlim(1,*)=nu-1 ; array of upper limits iter=0 repeat begin jj=(jlim(0,*)+jlim(1,*))/2 ii=where(v ge u(jj),n) & if n gt 0 then jlim(1-inc,ii)=jj(ii) ii=where(v lt u(jj),n) & if n gt 0 then jlim(inc,ii)=jj(ii) jdif=max(jlim(1,*)-jlim(0,*)) if iter gt maxcomp then begin print,maxcomp,iter, jdif message,'binary search failed' endif iter=iter+1 endrep until jdif eq 1 w=v-v w(*)=(v-u(jlim(0,*)))/(u(jlim(0,*)+1)-u(jlim(0,*)))+jlim(0,*) return,w end