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What to Expect
• Background: Self-organized criticality (SOC), the Poisson process, and flares


• Result 1: Aggregate flare count distributions are overdispersed


• Result 2: Flare waiting times within individual active regions depart from the 
exponential distribution and are overdispersed


• Result 3: The observed counting process—a mixture of temporally overlapping 
active regions—results in overdispersion


• Moving Forward: Implications for flare studies and future work



Background: 
Self-Organized Criticality, the 
Poisson Process, and Flares



Self-Organized Criticality and Flares
• Flares modeled based on self-organized criticality:


• Avalanches: energy build up and small perturbations in system can trigger cascading 
events, reaching instability threshold


• Solar corona evolves to critical state where flares (energy releases) occur across all scales

1(Figure 1) Aschwanden, M. J. et al., (2014). 25 Years of Self-Organized Criticality: Solar and Astrophysics.



Key Flare Properties for SOC
• Under certain SOC models, we expect:


• Energies (E) follow a power-law1:  
 
                 


• Flare occurrences follow a Poisson 
process 

• Counts distributed as Poisson: 
 




• Waiting times ( ) 
distributed as exponential 
 

N(E) ∝ E−α

N(t) ∼ Poisson(λt)

Wi = Ti − Ti−1

Wi ∼ Exponential(λ)

1Lu, E. T. & Hamilton, R. J. (1991). Avalanches and the Distribution of Solar Flares.
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Stationary Poisson Process
• A stationary Poisson process is a special case 

of a counting process, with the properties:


1. Disjoint intervals are independent


2. Stationary (constant) rate  for fixed 
interval


• The distribution of counts follow a Poisson 
distribution. For any :




• We also have that: 


• Solar and stellar flare counts are often 
assumed to be Poisson distributed!1

λ > 0

t ≥ 0

N(t) ∼ Pois(λ t), P(N(t) = n) =
(λt)ne−λt

n!

𝔼[N(t)] = Var[N(t)] = λ t

1Burton, K. et al. (2025). The Proxima Centauri Campaign - First Constraints on Millimeter Flare Rates from Alma.



Waiting Time Distributions

• The waiting time (or inter-arrival time) between 
two events is defined as: 


• The waiting times follow an exponential 
distribution: 
 

Wi = Ti − Ti−1

Wi
iid∼ Exp(λ), f(w) = λe−λw, w > 0



Non-Stationary Poisson Process and Overdispersion

• Overdispersion describes when: 
 

 
 
relative to the Poisson distribution


• Overdispersion can be caused by a 
non-stationary Poisson Process. 
Examples include:


• A deterministic, time-varying rate 



• Cox process, where  is 
stochastic

Var[N(t)] > 𝔼[N(t)]

λ(t)

λ(t)



Prior Results on Flare Waiting Times

• Several studies have identified power-law behavior of flare waiting times, rather than 
exponential1,2


• Power-law behavior explained as a consequence of a non-stationary Poisson process. 
Approaches:


• Bayesian blocking methods to fit (discrete) piecewise constant exponential distributions3


• Polynomial functions for continuously-varying rate parameter4

1Wheatland, M. S. et al. (1998).; 2Bofetta, G. et al. (1999).; 3Wheatland, M. S. (2000).; 4Aschwanden, M. J. et al. (2021).



Why, and What About Counts?

• Why the power-law/non-stationary behavior?


• Solar cycle?


• Sympathetic flaring?


• Unresolved, latent subprocesses?


• What about count distributions? 


• Should we still assume a Poisson 
distribution for solar and stellar 
flares?

Credit: NASA/SDO



Data for our Analysis
• GOES flare database generated from 

detections using X-Ray Sensor (XRS) 1-
minute average flux in 1-8  (XRS-B) 
passband


• Includes flares from July 1996 — 
December 2019 (Cycles 23 and 24)


• Properties in catalog:


• start, peak, and end times


• Peak flux and total energy


• (Some) Solar disk locations and active 
region assignments

Å



Result 1: 
Aggregated flare count 

distributions are overdispersed



Overdispersion in Aggregate Count Distributions
• Approach: 

• Identify 342 distinct rate-constant 
time blocks using Bayesian Blocking 
method


• Fit Poisson distribution to each block


• Evaluate goodness-of-fit and 
overdispersion


• Poisson unreasonable fit for ~20% of 
time blocks, of which 87% are 
overdispersed



Result 2: 
Flare waiting times within individual active regions 
depart from the exponential distribution and are 

overdispersed



Non-Exponential Waiting Times within Active Regions
• Approach: 

• Construct waiting time distributions 
for flares within each individual active 
region


• Fit exponential distribution to waiting 
times


• Evaluate goodness of fit and 
overdispersion


• About 50% of active regions have 
non-exponential waiting time 
distributions, many of which are 
overdispersed



Result 3: 
The observed counting process—a mixture of 
temporally overlapping active regions—results 

in overdispersion



What Contributes to Overdispersion?
• We observe non-exponential 

waiting times and overdispersed 
counts, even within active regions. 
Why?


• Non-stationary flare rate due to 
solar cycle


• Sympathetic flaring within active 
regions (non-independence of 
events)?


• Unresolved, latent 
subprocesses from temporally 
overlapping active regions



Overlapping Active Regions Model
• We model the observed event count process  

as the sum of  Poisson subprocesses (  active 
regions), each active only on an interval 




• For each  subprocess, we have:


• Onset time: 


• Duration: 


• Rate: 


• For each subprocess: 

N(t)
K K

[τk, τk + vk]

k = 1,…, K

τk

vk = ωk − τk

λk

Nk(t) ∼ Pois(λk (t − τk))



Overlapping Model
• The observable process is described by: 

 




• The indicator functions ensure each subprocesses contributes only during its active period, 
and is fixed after


• We could fix the latent parameters and number of subprocesses, or set priors:


•  


• 


• For fixed , fixed  for all , and disjoint support with no gaps, then  reduces to a 
stationary Poisson process with rate 

N(t) =
K

∑
k=1

[Nk(t) ⋅ 𝕀(τk < t ≤ τk + vk) + Nk(τk + vk) ⋅ 𝕀(t > τk + vk)]

K ∼ pK(θ)

(τk, vk, λk) ∼ f(τ, v, λ)

K λk = λ k N(t)
λ



Characteristic Function
• Use the characteristic function to study how this model departs from Poisson in various settings


• Generally, the characteristic function is: 
 

 

where moments can be found via the Taylor series expansion


• Characteristic function for the overlapping model, given : 
 

 

φX(u) = 𝔼[e i u X] = ∫
∞

−∞
e i u x dFX(x), u ∈ ℝ

(τk, vk) ∼ f(τ, v)

φN(t)(u) =
∞

∑
K=1

pK(θ) [ ∫
t

0∫
t−τ

0
eλ (t−τ) (eiu−1) f(τ, v) dv dτ + ∫

∞

0 ∫
t

0
eλ v (eiu−1) f(τ, v) dτ dv]K .



Mean and Variance Derivation
• Setting:


•  overlapping Poisson subprocesses, each of rate 


• Fixed start times, with lifetimes  (mean duration )


• First Moment: 
 

 

• Second Moment: 
 

 

K = 2 λ > 0

∼ exp(a)
1
a

𝔼[N(t)] = − i φ′￼N(t) (0) =
2 λ
a (1 − e−at)

𝔼[N(t)2] = 2( e−at λ
a )2 +

2
a2 [ a e−at λ (e−at − 1) + 2 e−at λ2 (at + 1)]



Results: Mean and Variance
• Mean: 

 




• Variance: 
 

 

• Where  is the overdispersion factor 
and always 

𝔼[N(t)] = − i φ′￼N(t) (0) =
2 λ
a (1 − e−at)

Var[N(t)] = 𝔼[N(t)]σ(λ, a, t) =
2λ
a

(1 − e−at)σ(λ, a, t)

σ(λ, a, t) = λ
a (1 + e−at) + 1

1 − e−at (1 − (1 + 2λt)e−at)
≥ 1



Moving Forward



Implications for flare studies
• Many flare studies derive uncertainties 

based on Poisson assumptions for 
counts1


• In the presence of overdispersion, this 
assumption leads to systematic errors 
and underestimated uncertainties


• Used to constrain physical processes 
as preparatory analysis for flare 
forecasting, so understanding 
overlapping process important2


• Takeaways:  

• 1. Check your assumptions! 

• 2. Consider alternative models to 
account for overdispersion (e.g., 
negative binomial) 1Burton, K. et al. (2025). The Proxima Centauri Campaign - First Constraints on Millimeter Flare Rates from Alma. 

2Biasiotti, L. & Ivanovski, S. L. (2025). Statistical Analysis of Solar Flare Properties from 1975 to 2017.



Limitations of Analysis
• Many low-energy flares missing in catalog


• Difficult to identify temporally overlapping flares in full-disk light curve


• Increased background flux makes weaker flares more likely to be undetected


• Relatively few A and B class flares due to sensitivity and detection limitations



Future Work

• Generate more comprehensive flare catalog using 
wavelets and convolutional neural networks1


• Fit power-laws to distribution of flare energy 
distribution with new catalog


• Connect results to constrain physical processes 
and improve flare forecasting

1 Ingram et al., (2023). Machine Learning Methods to Detect More Solar Flares. Parker Heliophysics Scholars 6th Meeting.
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Summary
• Takeaway: Be careful when making a Poisson assumption for flares; you may 

underestimate your uncertainties!


• Result 1: Aggregate flare count distributions are overdispersed


• Result 2: Flare waiting times within individual active regions depart from the 
exponential distribution and are overdispersed


• Result 3: A statistical model for the observed counting process—a mixture of 
temporally overlapping active regions—results in overdispersion


• Next: Generate a more comprehensive flare catalog and fit power-law to flare energies



Supplementary Slides



Missing low-energy/flux flares



Interpreting Probability-Probability Plots

•



Active Region Exponential Fits



Power Analysis for Goodness of Fit Tests



Overlapping Simulations at Point of Overlap



Deconvolution of Waiting Times

•



Overdispersion Contour Plot for Model



Estimation for Overlapping Model
• Expectation-Maximization Algorithm



Flare Detection Using CNNs



GOES Solar Activity Tracking and Flare Detection

• GOES X-Ray Sensor (XRS) measures full-disk integrated 
flux in 0.5 - 4  (XRS-A) and 1-8  (XRS-B) passbands.


• Light curves are constructed from 1-minute average flux 
measurements for both passbands.


• Spikes in light curves correspond to flare event occurrence 
somewhere on the disc or limb.


• GOES flare catalog is constructed using a detection 
algorithm applied to the 1-8  passband.


• Start time of flare is first minute of steep monotonic 
increase in flux in a sequence of 4 minutes.


• Flare peak time is the minute of the maximum flux in the 
event time interval.


• End time of flare is the minute of median of 3 successive 
background-subtracted intensities falls to 1/2 the 
background-subtracted peak.

Å Å

Å

GOES detection algorithm described in-depth here: XRS User Guide 
See data source: https://www.ngdc.noaa.gov/stp/satellite/goes-r.html

https://data.ngdc.noaa.gov/platforms/solar-space-observing-satellites/goes/goes16/l2/docs/GOES-R_XRS_L2_Data_Users_Guide.pdf
https://www.ngdc.noaa.gov/stp/satellite/goes-r.html


When are Flares Missed by GOES?

• Difficult to identify temporally overlapping 
flares in full-disk light curve.


• Increased background flux makes 
weaker flares more likely to be 
undetected.


• Relatively few A and B class flares due to 
sensitivity and detection limitations.



Convolutional Neural Networks
• Convolutional neural networks (CNNs) are 

used for anomaly detection in 1D time 
series data.


• To start, we follow the architecture from 
Feinstein et al. (2020) , who used CNNs to 
detect stellar flares in TESS light curves.


• We train the CNN to identify solar flare 
peaks in  minute windows of 
standardized flux.


• Standardized = % change from central 
flux in window.

*

±15

Feinstein et al. Flare Statistics for Young Stars from a Convolutional 
Neural Network Analysis of TESS Data. ApJ 160, 219, 2020.
*

Convolution - 4 - 6
MaxPooling - 2
Dropout - 0.1

Convolution - 3 - 8
MaxPooling - 2
Dropout - 0.1

Flatten
Dense - 15

Dropout - 0.1

Sigmoid Output 
(0,1)



Training the CNN
• Data consists of 156,727 31-minute 

windows labeled 1 for flare event peak at 
center, 0 for non-flare event.


• 7,870 windows centered on GOES-
detected flare profiles.


• 148,857 windows of non-flare profiles 
determined by regions defined by overly 
sensitive wavelet method.


• 80/10/10 train, validation, test data split.


• Probability score threshold optimized 
with a validation set.

Binary 
Accuracy Precision Recall

Training 
Set 

(Threshold = 0.5)
99.31% 97.26% 88.68%

Test 
Set 

(Threshold = 0.05)
98.93% 84.82% 96.25%

TP + TN
N

TP
TP + FP

TP
TP + FN

TP = True Positive

TN = True Negative

N = Number of Predictions


FP = False Positive

FN = False Negative



How Do We Evaluate the CNN?
• Evaluate the CNN by generating synthetic 

flare and non-flare profiles.


• Select set of real flare profiles are injected 
into random regions of light curves to 
generate synthetic flare profiles.


• Synthetic non-flare profiles generated 
from adding A-class flat background to 
noise obtained from wavelet method.


• 7,550 synthetic flare profiles, 7,900 
synthetic non-flare profiles.



CNN Performance on Synthetic Data
• CNN performs well on identifying synthetic 

flare profiles peaks.


• Next version of synthetic data needs to be 
more comprehensive to study where CNN 
succeeds and fails in a multitude of cases.

Binary 
Accuracy Precision Recall

Evaluation 
Set 

(Threshold = 0.05)
96.79% 96.68% 96.75%

Predicted 
Non-Flare

Predicted 
Flare

True  
Non-Flare 7635 251

True  
Flare 245 7303

Total

7886

7545

Total 7880 7554 15434


