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Model Building

Recall Simple Multilevel Model

Example: Background contamination in a single bin detector

@ Contaminated source counts: y = ys + ys
@ Background counts: x
@ Background exposure is 24 times source exposure.

A Poisson Multi-Level Model:
LEveL 1: y|ys, A\s st Poisson(Ag) + s,
dist

LEveL 2: yg|\B ot Pois(Ag) and x|A\g ~ Pois(\g - 24),
LeveL 3: specify a prior distribution for Ag, As.

Each level of the model specifies a dist’'n given unobserved
quantities whose dist'ns are given in lower levels.
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Multi-Level Models

Definition

A multi-level model is specified using a series of conditional
distributions. The joint distribution can be recovered via the
factorization theorem, e.g.,

Pxvz (XY, 2|0) = px|yz(X|y, z,61) py|z(y|z,02) pz(z|63).

@ This model specifics the joint distribution of X, Y, and Z,
given the parameter 6 = (64,62, 03).

@ The variables X, Y, and Z may consist of observed data,
latent variables, missing data, etc.

@ In this way we can combine models to derive an endless
variety of multi-level models.
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Example: High-Energy Spectral Modeling

Model Building
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The Expanding Universe

Redshift Hubble’s Famous Diagram
=
: .
2

4000 5000 0 9000 FIGJRE 1
s) Velocity-Distance Relation among Extra-Galactic Nebulae.

Radial velocities, corrected for solar motion, are plotted against

distances estimated from involved stars and mean luminosities of

nebulae in a cluster. The black discs and full line represent the

“ ” H solution for solar motion using the nebulae individually; the circles

For nearby ObJeCtS, and broken line represent the solution combining the nebulae into

groups; the cross represents the mean velocity corresponding to

the mean distance of 22 nebulae whose distances could not be esti-

Z = VClOCity/ (o] mated individually.
velocity = Hy distance. Hubble (1929)

The Big Bang!

http://www.noao.edu/image_gallery/html/im0566.html
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Distance Modulus in an Expanding Universe

Model Building

Apparent magnitude - Absolute magnitude = Distance modulus:
m-M = ) [ = 5logy(distance [Mpc]) + 25 ]
Relationship between p and z

@ For nearby objects,

Open Universe

@

distance = p oc Z.

(Correcting for peculiar/local velocities.)

@ For distant objects, involves
expansion history of Universe:

Separation Between Galaxies —e

Closed Universe

p=9(z,Qn,Qu, Ho)

[function of density of dark energy and of total matter]

L

http://skyserver.sdss.org/dr1/en/astro/universe/universe.asp

We observe M only if m < (say) 24.
l.e., we observe M only if M = m — j(z) < 24 — u(z) = F(2).
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A Multilevel Model for Selection Effects

We wish to estimate a dist'n of absolute magnitudes, M;,

@ Suppose M; ~ NORM(y,02), fori=1,....n;
@ But M,‘ is Only observed if M,‘ < F(Zi)1; [z is redshift, see next slide]
@ Observe N < n objects including z;; § = (i, 0?) estimated.

(Forp = —19.3and o = 1))
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1M,‘ observed if < F(z;) = 24 — p(2;); n(z;) from A-CDM model (2m = 0.3, Q. = 0, Hy = 67.3).
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Model 1: Ignore Selection Effect

Likelihood: M;|0,z; ~ NORM(y,0?),fori=1,...,N;
Prior: p ~ NORM(pg, 72), and o2 ~ 52/x2;
Posterior: p | (My, ... My,,0%) ~ NORM(-,-) and

0'2 | (M1 goes Mn, M) ~ /X2 (Details on next slide.)

Definition

If (some set of) conditional distributions of the prior and the
posterior distributions are of the same family, the prior dist'n is
called that likelihood’s semi-congutate prior distribution.

Semi-conjugate priors are very amenable to the Gibbs sampler.
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Gibbs Sampler for Model 1

Step 1: Update p from its conditional posterior dist'n given o2:

pD < Norm (ﬁ, sﬁ)
with N 4
= (T 8)/ (Aot 2) S (Go+d)

Step 2: Update o2 from its conditional posterior dist'n given s:

N
(0_2)(t+1) N [Z (Mi _M(t+1))2 +52] /X/2v+y-

i=1

In this case, resulting sample is nearly independent.
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A Closer Look at Conditional Posterior: Step 1

Given o2:
Likelihood: M;|0, zj ~ NORM(y, 02), fori = 1,..., N;

Prior: p ~ NORM(pg, 72)
Posterior: yu | (My, ... Mn,02) ~ NORM(f, s2) with

__(ZaM o) (N 1N e (NN
“Z('Hz [zrz) s-(z2)

o2

@ Posterior mean is a weighted average of sample mean
(4 234 M;) and prior mean (), with weights 2% and .

o2

@ Compare s2 with Var (1N SN, M,-) =<,
@ Reference prior sets g = 0 and 72 = oo. (Improper and flat on 1..)
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A Closer Look at Conditional Posterior: Step 2

Given p:
Likelihood: M;|0, z; ~ NORM(y, 02), fori=1,...,N;
Prior: 02 ~ 32/x2;
Posterior:
N
t+1 2
@)V My, M) ~ [ (M — ) +52] /X/2V+y-
i—1

@ The prior has the affect of adding v additional data points
with variance /2.

@ Reference prior setsv = 52 = 0. (Improper and flat on log(c?2).)
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Model 2: Account for Selection Effect

Likelihood: The distribution of the observed magnitudes:
_ Pr(Gi = 1M, z;,0)p(Mj|0, z;)
§Pr(O; = 1|M;, z;, 0)p(M;10, z;)dM;’

p(Mi|O; = 1,0, z)

Here

o M,"Q,Z,‘ ~ NORM(,U,,JZ) and

@ Pr(O; = 1|M;, z;,0)) = Indicator{M; < F(z;)}
So M,|(O; = 1,0, z)) ~ TRUNNORM(u, 0; F(z;)].

Prior: pu ~ NORM(MO,#), o2 ~ »32/x,2,;

Posterior: Prior is not conjugate, posterior is not standard.
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MH within Gibbs for Model 2

Neither step of the Gibbs Sampler is a standard dist'n:

Step 1: Update y from its conditional dist’'n given o2

Use Random-Walk Metropolis with a
Norm(u(!, s?) proposal distribution.

Step 2: Update o2 from its conditional dist'n given s

Use Random-Walk Metropolis Hastings with a
LoGNORM [log (02 (1), s2] proposal distribution.?

Adjust s2 and s3 to obtain an acceptance rate of around 40%.

2If X ~ LoGNORM(p, 02) then log(X) ~ NORM(p, o2).
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Simulation Study |

@ Sample M; ~ NORM(pu = —19.3,0 = 1) fori=1,...,200.
@ Sample z; from p(z)ac(1 + z)?, yielding N = 112.
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Simulation | (i = —19.3, om = 20, »
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Simulation Study I

@ Sample M; ~ NORM(u = —19.3,0 = 3) fori = 1,...,200.
@ Sample z; from p(z)ac(1 + z)?, yielding N = 101.
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Simulation Il (4 = —19.3, 0 = 20, » = 0.02, 52 = 0.02)
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Frequentists Origins of Hierarchical Models

Suppose we wish to estimate a parameter, 6, from repeated
measurements:

yi " NORM(6, 02) for i=1,...,n

E.g.: calibrating a detector from n measures of known source.

An obvious estimator:

énaive _ 1 i .
=5 Yi
i=1

What is not to like about the arithmetic average?
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Frequency Evaluation of an Estimator

@ How far off is the estimator?
(6—0)

@ How far off do we expect it to be?
A ~ N 2
MSE(DI6) = E [0 - 02 0] = [ (0~ 6) fylordy

@ This quantity is called the Mean Square Error of 4.

@ An estimator is said to be inadmissible if there is an
estimator that is uniformly better in terms of MSE:

MSE(A|6) < MSE(A"¥¢|9) for all 6.
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Mean Square Error: An lllustration

EXAMPLE: Suppose H ~ BINOMIAL(n = 3, 7).

Recall:

If H|n, = < BINOMIAL(n, 7) and 7 ' BETA(a, 3)

dist

then 7|H,n ~ BETA(h+ a,n— h+ j3).

Consider four estimates of :

i) 71 = H/n, the maximum likelihood estimator of r;

i) 72 = E(m|H), where 7 has prior distribution = ~ Beta(1, 1)
iii) w3 = E(w|H), where 7 has prior distribution m ~ Beta(1,4)
iv) w4 = E(n|H), where 7 has prior distribution = ~ Beta(4, 1)
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Frequency Properties of Estimators and Intervals

Remember: If the data is a random sample of all possible data, the
estimator 7; is also random. It has a distribution, mean, and variance.

We can evaluate the #; as an estimator of 7 in terms of its
bias: E(#j | ) — 7 (s bias bad??)

variance: E [(fr, —E(#i ] 7r))2 | 77]
mean square error: E[(#; — 7)? | 7] = bias® + variance

biased estimator high variance low mse

|

!

!

!

4
!
02 04 06 08 10 12
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MSE of Four Estimators of Binomial Probability

mse
0.04
1

Solid: MLE  Dashed: BETA(1,1)

mean square error

0.08
1

0.00
1

0.0

Dotted: BETA(1,4)

@ The MSE (of all four estimators) depends on true p = .
@ In this case: no evidence of inadmissiblity.

David A. van Dyk
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Inadmissibility of the Sample Mean

Suppose we wish to estimate more than one parameter:

y,-,-infp NORM(6;,0?%) for i=1,...,n and j=1,...,G
The obvious estimator:
N . o
fraive _ . Z; yj isinadmissible if G > 3.
=

The James-Stein Estimator dominates g"ive:

08 = (1= w™) g7 + WSv forany v
o?/n

Y S 2 _ )2
20+ 12 and 77 =E[(0; —v)7].

with 'S ~

Specifically, w’s = (G — 2)‘72/”2/6:1 <§jr_1aive 2
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Shrinkage Estimators

James-Stein Estimator is a shrinkage estimator:

équ _ (1 . st) é;laive LWy

15

10
I

shrinkage estimate

‘ 012 014 oie 018 1‘.0
data highly variable /

0; very similar (to v)

0.0
6; highly variable /
data very precise
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To Where Should We Shrink?

James-Stein Estimators
e Dominate the sample average for any choice of v.
@ Shrinkage is mild and 6'S ~ #"e for most v.
@ Can we choose v to maximize shrinkage?

9}5 _ (1 . wJS) 9]1_1aive + wJSV

o?/n
o2/n+ 72
@ Minimize 72.

with w'S ~ and 72 = E[(0; — v)?].

The optimal choice of v is the average of the 0);.
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lllustration

Suppose:
@ y; ~ NoRrM(#;,1) forj=1,...,10
@ 0; are evenly distributed on [0,1]

MSE(0""°) versus MSE((’)

(summing over the 10 estimators)

MSE
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lllustration

Suppose:
@ y; ~ NoRrM(#;,1) forj=1,...,10
@ 0; are evenly distributed on [-4,5]

MSE(0""°) versus MSE((’)

(summing over the 10 estimators)

o |
° B ————
®
©
w
)
=
< 4
o 4
o
T T T T T
-4 -2 0 2 4
v
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Intuition

@ If you are estimating more than two parameters, it is
always better to use shrinkage estimators.
@ Optimally shrink toward average of the parameters.
© Most gain when the naive (non-shrinkage) estimators
e are noisy (o2 is large)
e are similar (72 is small)
© Bayesian versus Frequentist:

e From frequentist point of view this is somewhat problematic.
e From a Bayesian point of view this is an opportunity!

© James-Stein is a milestone in statistical thinking.

o Results viewed as paradoxical and counterintuitive.
e James and Stein are geniuses.
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Bayesian Perspective

Frequentist tend to avoid quantities like:
0 E(Gj) and Var(9j)
Q E[(t—v)?]

From a Bayesian point of view it is quite natural to consider
@ the distribution of a parameter or
© the common distribution of a group of parameters.

Models that are .formulazjed in terms of the latter are
Hierarchical Models.
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A Simple Bayesian Hierarchical Model

Suppose
yil6; "<P NoRMm(6;,02) for i=1,...,n and j=1,...,G
with nd
1mndae;
0; "~" NoRM(u, 72).
Let ¢ = (02,72, 1)

HB\ Anaive HB : HB a?/n
The Bayesian perspective
@ automatically picks the best v,
@ provides model-based estimates of ¢,
@ requires priors be specified for o2, 72, and .
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Color Correction Parameter for SNla Lightcurves

SNila light curves vary systematically across color bands.
@ Color Correction: Measure the peakedness of color dist’n.
@ Details in the next section!!
@ A hierarchical model:

&lg "L NORM(gj,0?) for j=1,...,288
with -
¢; "~" NoRM(cy, R%) and p(cy, Re)ocl.

@ The measurement variances, aj? are assumed known.

@ We could estimate each ¢; via ¢; + o;, o...
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Fitting the Hierarchical Model with Gibbs Sampler

&le; "<" NoRM(cj,0?) for j=1,...,G

¢ """ NoRM(co, A2) and p(co, R)oct.

To Derive the Gibbs Sampler Note:

@ Given (¢p, R2), a standard Gaussian model for each j:
c

A ind . ind
gl "~" NoRrM(¢j,07) with ¢; "~" NORM(co, R3).

@ Given ¢y, ..., cg, another standard Gaussian model:

¢; "" NoRM(co, R2) with p(co, Re)oct.
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Fitting the Hierarchical Model with Gibbs Sampler

The Gibbs Sampler:
Step 1: Sample ¢y, ..., cg from their joint posterior given
(co. RZ):

¢ | (&.c5 ", (R2)1) ~ NORM (i, s?)

Ci cl=v 1 1 . 1 1 -
w= (G me) /() $- (F )
Step 2: Sample (co, R2) from their joint posterior given ¢i,...cg :

G () _ a2 G
(¢’ —¢ . _ 1
~ 211(2{—) with ¢ = a 2 C/(t)
XG-2 j=1

P, e, (RZ)® ~ Norm (a, (Rg)“)/e)

(RO (c",...,cd)
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Shrinkage of the Fitted Color Correction

Simple Hierarchical Model for ¢

++++++ Likelihood Fit

95% Credible Interval

0.6

0.4

0.0
|

Conditional Posterior Expectation of c;
0.2

-0.2
|

R,

Pooling may dramatically change fits.
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Standard Deviation of the Fitted Color Correction

Simple Hierarchical Model for ¢

+ 4+ 4+ + o+ Likelihood Fit +

"""""" 95% Credible Interval

Conditional Posterior Standard Deviation of ¢;
0.00 0.05 0.10 0.15 020 025 030 0.35

R,

Borrowing strength for more precise estimates.

David A. van Dyk Bayesian Astrostatistics: Part IIl



Multi-Level Models
Example: Selection Effects
Hierarchical Models and Shrinkage

Model Building

The Bayesian Perspective

Advantages of Bayesian Perspective:

@ The advantage of James-Stein estimation is automatic.
James and Stein had to find their estimator!

@ Bayesians have a method to generate estimators.
Even frequentists like this!

@ General principle is easily tailored to any problem.

@ Specification of level two model may not be critical.
James-Stein derived same estimator using only moments.

Cautions:

@ Results can depend on prior distributions for parameters
that reside deep within the model, and far from the data.
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The Choice of Prior Distribution

Suppose
y,-j|9,-i“5?p NORM(;,0?) for i=1,...,n and j=1,...,G
with .
1ndae;
0; "~" NORM(u, 72).
@ Reference prior for normal variance: p(o?)cc1/02, flat on log(c?)
@ Using this prior for the level-two variance,

p(r?)c /7%
leads to an improper posterior distribution:

21 2\ p(e2), | Yaruly, ) % y,—E<u|y, 2)?
p(rly, o®)acp(r%) {Z ) }

(o2/n+ 12)G ! (o2/n + 72
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Extended Modeling Examples

The Expanding Universe

Redshift Hubble’s Famous Diagram

-

K3
¥ el S
id .
o,
%
3
7000 8000 REIAE, o PARSECS 2210% Pamsecs
gs! FIGURE 1

Velocity-Distance Relation among Extra-Galactic Nebulae.
Radial velocities, corrected for solar motion, are plotted against
distances estimated from involved stars and mean luminosities of
F “ ” H nebulae in a cluster. The black discs and full line represent the
or “nearby” objects, solution for solar motion using the nebulae individually; the circles
and broken line represent the solution combining the nebulae into
groups; the cross represents the mean velocity corresponding to

Z = redshift oc Velocity the mean distance of 22 nebulae whose distances could not be esti-

mated individually.

http://www.noao.edu/image_gallery/html/im0566.html

= Hy distance. Hubble (1929)

The Big Bang!

avid A. van Dyk Bayesi
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Distance Modulus in an Expanding Universe

Extended Modeling Examples

Apparent magnitude - Absolute magnitude = Distance modulus:

m-M = v [ = 5log;g(distance [Mpc]) + 25 ]
Relationship between 1 and z

@ For nearby objects,

distance = p oc Z.
(Correcting for peculiar/local velocities.) E
@ For distant objects, involves f
expansion history of Universe: K
3

H = g(za Q/\v QMa HO) Time

[function of density of dark energy and of total matter] http://skyserver.sdss.org/dr1/en/astro/universe/universe.asp

If we observe both m and M we can infer
1 and the cosmological parameters.

David A. van Dyk Bayesian Astrostatistics: Part IIl
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Type la Supernovae

If mass surpasses “Chandrasekhar threshold” of 1.44 M ...

Sheds outer Butifitcan
Expands to i Cools and ' It may pass 1.4
red giant s contracts to iy f S solar masses and
L & warf from a binary "
white dwarf amaonan suddenly explode

- partner 2 !
Star like ol intoa Type la
Sun ’ g supernova
: / - '
L ;
\ J;-;.- q
* o
. 10 billion years

If a white dwarf’s binary partner
is another white dwarf, then accretion
to one of them could drive it

to supernova conditions.

Image Credit: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snoven.html

Due to their common “flashpoint”, SN1a have similar absolute
magnitudes:

M; ~ NORM(Mp, 02,).

Non-linear Regression: mg; = g(z;, Qa, Qum, Ho) + M;

David A. van Dyk Bayesian Astrostatistics: Part IIl
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Extended Modeling Examples

Phillips Corrections

@ Recall: Low-z calibration sample
.y 2 -20 T T T T After dust
IW] NORM(MO, O-mt)' ; correction
-19.5
@ Regression:
-19
le = —OéXj-f—ﬂCj‘i‘ waa %718.5- E
E .
o M ~ NORM(Mp, 02). g -er \ y
° Xisa LC stretch. 3 st Before dust 1
@ ¢ is color correction. - correction
= 17+ k
2 _ 2 g
@ 0f < Oof < -165H + Mg 4
e =X Yint g B,n o
. _ 3 o IR
@ Reduce variance, increase 2 % am g O

precision of estimates. Light curve stretch

Brighter SNla are slower decliners over time.

Non-linear Regression: Mg = g(Zj, Qa, Qu, Ho) + ax; + B¢ + Mf
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Predicting Absolute Magnitude

SN1a absolute magnitudes are correlated with characteristics
of the explosion / light curve:

@ x;: rescale light curve to match mean template
@ ¢;: describes how flux depends on color (spectrum)

20 — -20
(~ -

A9F = 419
2 v’// 3
2 J/ ] S
S 8l Time scale stretch 418 €
-] factor applied %‘
s Template light curve £
£ a7k Lower peak for determining {73
> intensity, absolute magnitude —
é steeper decline of Type la supernova A

16" Observed light curves -6

1 1 1 1 1 1

-20 0 20 40 0 20 40
Days Days

Credit: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snoven.html
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A Hierarchical Model.
Level 1:3 G, Xj, and mg; are observed with error.

Gj G
X | ~ NORM xi |, G
mp; mpg;

Level 2:
@ ¢ ~ NoRM(cy, R2)
@ x; ~ NORM(xo, R2)
© The conditional dist'n of mg; given ¢; and Xx; is specified via
mgj = pj + Mj — ax; + 3¢,

with W = g(Z/’,Q/\7QM7 Ho) and /W/-6 ~ NORM(MmJ?).
Level 3: Priors on a, 8, Qa, Qu, Ho, Co, A2, X0, RZ My, o2

Shariff et al (2016). BAHAMAS: SNla Reveal Inconsistencies with Standard Cosmology. ApJ 827, 1.
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Other Model Features

Results are based on an SDSS (2009) sample of 288 SNla.*

In our full analysis, we also
@ account for systematic errors that have the effect of
correlating observation across supernovae,
@ allow the mean and variance of M to differ for galaxies
with stellar masses above or below 10" solar masses, and

© use a larger JLA sample® of 740 SNla observed with
SDSS, HST, and SNLS.

4Shariff et al (2016). BAHAMAS: New SNla Analysis Reveals Inconsistencies with
Standard Cosmology. ApJ 827, 1.
SBetoule, et al., 2014, arXiv:1401.4064v1

David A. van Dyk Bayesian Astrostatistics: Part IIl



Hierarchical Model: Supernovae & Cosmology
Non-Representiative Data and StratLearn
Discussion

Extended Modeling Examples

Shrinkage Estimates in Hierarchical Model
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Shrinkage Errors in Hierarchical Model
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Fitting Absolute Magnitudes Without Shrinkage

Under the model, absolute magnitudes are given by
M; = mgj — pj + ax; — B¢ with p; = g(2;, Qa, Qum, Ho)

Setting
@ o, 3,Qx, and Qy to their minimum y? estimates,
@ Hy = 72km/s/Mpc, and
© mg;, x;, and ¢ to their observed values

we have

M; = mgi — g(2, Qp, Qm, Ho) + aX; — B¢

with error

~ \/ Var(fg) + a2Var(%) + 2 Var(§))
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Comparing the Estimates

-17

——  Posterior Error-bar
———  y’-based Error-bar

-18

M* (absolute magnitude)
-19
1
Feft—e—
Feft—e—

0.4 0.6 0.8 1.0 1.2 1.4 1.6
z (red shift)
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Model Checking

We model:

mg;i = 9(Zi, Qn, Qm, Ho) — ax; + Bei + Mf

How good of a fit is the cosmological model,
9(2i, Qn, Qm, Ho) ?

We can check the model by adding a cubic spline term:
mgi = 9(2i,Qn, QUm, Ho) + h(zj) — ax; + Be; + M

where, h(z;) is cubic spline term with K knots.
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Model Checking

Fitted cubic spline, h(z), and its errors:

Cubic Spline Curve Fitting (K=4) Cubic Spline Curve Fitting (K=9)
e |
=
3
w |
3
s o | N
2 o £
= =
] ]
H H
£ £
= 3
]
B w0
L] 9 1
T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
z (red shift) z (red shift)

Can use similar methods to compare with
competing cosmological models.
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Classification of Sources

Image Credit: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snoven.html

Due to common “flashpoint”, SN1a have similar absolute magnitudes:
M; ~ NORM(My, o2).

Non-linear Regression: mg; = g(z;, Qa, Qu, Ho) + M;

It is critical that we are able to identify a sample
of Type 1a Supernovae.

Bayesian Astrostatistics: Part IIl
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Identifying Type la SN is Critical

sprTTT T TrrTTrTTT T I T
Thermonucleor Supernovae agn -
i Spectral Classification

I iydrogen

Helivm

=~ @ Typela

: T o o Reignition of nuclear
; e fusion in WD.
3} Care Collopse Supernovae Bl ° NO Hydrogen,

strong Silicon

@ Others
o Gravitational collapse
in massive stellar core.

Type Ic

Ralotive Flux

ok
4000 5000 6000 7000
Wavelength (Angstroms)

http://supernova.lbl.gov/~dnkasen/tutorial/
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Spectroscopic and Photometric Data

Spectroscopic Redshift Photometric Redshift
SEITTITERCEET IR {ERARAARAR: | BARRDEARR) |pAARzARAR {RARRERARD) s
r Thermonuclear Supernovae %
I iydrogen %

;8 Core Collopse Supernovae Al

M Troslic https //inspirehep. net/record/1"§ﬁ§2"l(‘5'/plots

http://www.noao.edu/image_gallery/html/im0566.html Qo |ntegrated average in
each passband.

: : @ More readily available,
@ Train on Spectroscopic but far less informative.

@ Target = Photometric

Relotive Flux

Can we Train a Classifier
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Photometric Lightcurve Data
g-band r-band
'] byt 3 abys i,
2 =4 L
56220 ‘ 56é60 ‘ 56500 ‘ 563‘40 seézo ‘ seéeo ‘ 56‘300 ‘ 563‘40
Time (days) Time (days)
i-band z-band
¥ s
8 1 ¢ @ % %
5% b 5% ¢
| ‘g N S :
39 (SO %
oﬁ il g toas o%% EAR!
56é20 ‘ SGéGO ‘ 56(‘500 ‘ 56:;40 56é20 ‘ 562‘60 ‘ 56:;00 ‘ 56(;40
Time (days) Time (days)

@ Supernova photometric classification challenge (kesser, 2010).
@ Irregular observation times: interpolate for comparison
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Gaussian Process Interpoloation

Extended Modeling Examples

redshift = 0.3801, r-band redshift = 0.8526, i-band redshift = 0.3687, z-band
—— log posterior, SE: -121 —— log posterior, SE: -99.07 —— log posterior, SE: -81.51
3 log posterior, Gibbs: —100.31 8 log posterior, Gibbs: -98.83 3 log posterior, Gibbs: -81.4

& °
8 <
x x x
2 =2 3
w 'S w
o
3 ; % 8
(=} % o
56200 56250 56300 56200 56250 56300 56350 56200 56250 56300
Time (days) Time (days) Time (days)

@ Squared Exponential kernel: Ki.(t,s) = 72 exp (—% (t_lzs)2>.

@ Gibbs kernel: allows the length scale / to vary over time.
@ Gibbs kernel appears to overfit, we use SE.
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Photometric Classification of Supernovae

Data: 0 8 8 I
5° H % } tyq z° % 591 %%
émH wﬁh% fof s 58,§ @%
. . TR D%% H§q
56220 56260 56300 56340 56220 56260 56300 56340 56220 56260 56300 56340
Time (days) Time (days) Time (days)

E.g., Supernova photometric classification challenges, such as Kessler (2010).

Classifier: —_— —_—
6

@ Gaussian process fit of LCs (four color bands, g, r, i, z)

@ Diffusion map, plus redshift and a measure of brightness,
to extract 102 covariates

@ Random forest: cross validation to select hyperparameter

6Revsbech, Trotta, and van Dyk (2018). STACCATO: A Novel Solution to Supernova Photometric
Classification with Biased Training Samples, 473, 3969-3986.
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Outline

e Extended Modeling Examples
@ Hierarchical Model: Supernovae & Cosmology
@ Non-Representiative Data and StratLearn
@ Discussion
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Spectroscopic and Photometric Data

Spectroscopic Redshift Photometric Redshift
SEITTITERCEET IR {ERARAARAR: | BARRDEARR) |pAARzARAR {RARRERARD) s
r Thermonuclear Supernovae %
I iydrogen %

;8 Core Collopse Supernovae Al

M Troslic https //inspirehep. net/record/1"§ﬁ§2"l(‘5'/plots

http://www.noao.edu/image_gallery/html/im0566.html Qo |ntegrated average in
each passband.

: : @ More readily available,
@ Train on Spectroscopic but far less informative.

@ Target = Photometric

Relotive Flux

Can we Train a Classifier
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Spectroscopic Training Set Not Representative

Photometric
Spectroscopic

Density

|

A\

‘/ g
16 18 20 22 o 2 4 o 1 2 00 05 10  -05 00 05 10
r-band u-g g-r r—i i-z

A General Challenge
@ Aim: use training set (x, y) to predict target set (y from x)

@ Spectroscopic data more available for bright/near objects.
@ These object differ systematically from population.

Bayesian Astrostatistics: Part IIl

[Image Credit: Izbicki, Lee, Freeman, 2017, AoAS]
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Covariate Shift

We Assume Covariate Shift:
ptraining(_y ’ X) = ptarget(_y ‘ X) bUt ptraining(x) #* ptarget(x)

Supernovae classification:

Training Set e Grp. 1
SNla e Grp.2
<A © non-SNla <4 ® Grp.3
2 Test Set 2
S o S o
= =z
2 S
5 S5
N A N+
L e e I E e — T
0.0 0.4 0.8 1.2 0.0 0.4 0.8 1.2
redshift redshift

Learning methods must be adapted to account for
non-representative training data.
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Does a new drug improve health outcomes?

Causal Inference:
@ Split subjects: treatment (Z = 1) and control (Z = 0) group
@ What if treatment group differs systematically from control
group, e.g., in terms of x.
ptreatment(x ) ; Peontrol (X )
@ Randomiziation is the gold standard, not always possible.
Propensity Scores:
@ Rosenbaum and Rubin (1983) define propensity scores:
e(x)=Pr(Z=1|x).
@ Demonstrate that e(x) is a balancing score:

Prreatment (X | €(X)) = Peonrol (X | €(X)).

... easy to diagnose in practice!
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Propensity for Selection to Training Set

Setup:
@ We wish to predict y from x in target set.
@ Use prediction function, f(x), estimated in training set.
@ In this context we define the propensity score:

e(x) = Pr(training set | x), with 0 < e(x) < 1.

Result:
Because e(x) is a balancing score, under covariate shift,

ptarget(xay | e<X)) = plrain(xvy | e(x)).

l.e, given e(x) the joint test and target distributions are equal. It
follows, that for any loss function ¢(f(x), y),

Buarget[£(F(X), ¥) | €(X)] = Breain[£(F(X), y) | €(X)].
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StratLearn: Improved Learning under Covariate Shift

Propensity scores Parttion on two covariates

@ Estimate:
&(x) = Pr(target set | covariates)

brightness
4 .

@ Check: puin(X | (X)) = Praret(X | €(X))

@ Given e(x), expected loss of predictor,
f(x), is same in target & training sets.

o o5 os
redshift

Partition on all covariates

StratLearn
@ Stratify training & target sets on &(x).
@ Classify data separately in each strata.

brightness
g o

Reduce covariate shift and thus expected
classification/prediction error. T e

Reference: Autenrieth, van Dyk, Trotta, and Stenning (2023). Stratified Learning: A General-Purpose Statistical
Method for Improved Learning under Covariate Shift, SADM, 1-16.
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Results for Supernova Classification

ROC for StratLearn and several existing weighting methods.
@ “Biased” ignores Covariate Shift.

@ With an unbiased training set ]
AUC = 0.965. -
Weighting Methods for Cov Shift 5.
o ° ]
>
Prarget (X Z
Buarge [0, 1)1 = B | 222X 012, ) g
Prrain (X) g i
= |
@ KLIEP (Sugiyama et al., 2008) | — Biased: AUC =0.902
o uLSIF: AUC =0.902
@ ULSIF (Kanamori et al.. 2009); NN: AUC =0.923
— IPS: AUC =0.921
@ NN: Nearest-Neighbor (Kremer et al.. 2015); s —— StratLearn: AUC =0.958
@ IPS: probabilistic classification (Kanamori et 0,‘0 0,‘2 OTA 0,‘5 u,‘a 1,‘0

al.. 2009); False Positive Rate

Unfortunately, large weights are highly variable
and cause unreliable target predictions.
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Example: Photo-z Conditional Density Estimation

Objective: -
Conditional density estimation f(z|x) of o |Sourcg — Photo
redshift given photometric magnitudes.
Target
Significant covariate shift in magnitudes. 81
2

Data (following Izbicki et al., 2017): 2.

@ 468k galaxies (Sheldon et al. 2012), spectro- e

scopic redshift, 5 photometric magnitudes.
@ Create non-representative training set. S
@ Add k € {10,50} i.i.d. Gaussian covariates. L

What is the effect of high-dimensional
irrelevant covariates?

David A. van Dyk Bayesian Astrostatistics: Part IIl
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Example: Photo-z conditional density estimation

Generalized risk (Izbicki, et al., 2017):

A

1 ntdrget Mirain .

p: 2

R (f ) jf Z |Xtarget dZ B Z f tra1n| tram ( tram)’
i=1

ntarget : Nirain i=1

Conditional density estimation models:
@ hist-NN, ker-NN, Series

@ Comb (combination model)'

f(z|x) = Z okt (2]X),

[where o= 0andXf_, ax =1]

StratLearn:

@ Minimize risk separately in each stratum (with w(x) = 1).
@ Optimize « separately for each strata (with w(x) = 1).

David A. van Dyk Bayesian Astrostatistics: Part IIl
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Photo-z: Stress Test:

| ® Biased uLSIF NN e |PS ® KLIEP ® StratLearn
5 covariates 15 covariates 55 covariates
- «
o 3 [] ¥
(R _ ¥
x x © ¥ x * . *
2o & AN i & o . .
) o el g°
o - o _ N N o
[ [ 0 0 I
o~ -
I ¥ 3 3 1
LA] . 3 ¥ .
MR N v o~ o
¥ \
hist-NN ker-NN Series Comb hist-NN ker-NN Series Comb hist-NN ker-NN Series Comb

Target risk of photometric redshift estimates, using different
sets of predictors.

StratLearn is especially advantageous
with high dimensional covariates.
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Outline

e Extended Modeling Examples
@ Hierarchical Model: Supernovae & Cosmology
@ Non-Representiative Data and StratLearn
@ Discussion
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Discussion

@ Estimation of groups of parameters describing populations
of sources not uncommon in astronomy.

@ These parameters may or may not be of primary interest.

@ Modeling the distribution of object-specific parameters can
dramatically reduce both error bars and MSE ...

@ ... especially with noisy observations of similar objects.
@ Shrinkage estimators are able to “borrow strength”.

Don’t throw away half of your toolkit!!
(Bayesian and Frequency methods)

David A. van Dyk Bayesian Astrostatistics: Part IIl
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