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Recall Simple Multilevel Model

Example: Background contamination in a single bin detector

Contaminated source counts: y “ yS ` yB

Background counts: x
Background exposure is 24 times source exposure.

A Poisson Multi-Level Model:
LEVEL 1: y |yB, �S

dist„ Poissonp�Sq ` yB,

LEVEL 2: yB|�B
dist„ Poisp�Bq and x |�B

dist„ Poisp�B ¨ 24q,
LEVEL 3: specify a prior distribution for �B, �S.

Each level of the model specifies a dist’n given unobserved
quantities whose dist’ns are given in lower levels.

David A. van Dyk Bayesian Astrostatistics: Part III
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Multi-Level Models

Definition
A multi-level model is specified using a series of conditional
distributions. The joint distribution can be recovered via the
factorization theorem, e.g.,

pXYZ px , y , z|✓q “ pX |YZ px |y , z, ✓1q pY |Z py |z, ✓2q pZ pz|✓3q.

This model specifics the joint distribution of X , Y , and Z ,
given the parameter ✓ “ p✓1, ✓2, ✓3q.
The variables X , Y , and Z may consist of observed data,
latent variables, missing data, etc.
In this way we can combine models to derive an endless
variety of multi-level models.

David A. van Dyk Bayesian Astrostatistics: Part III



Figs/uci

Model Building
Extended Modeling Examples

Multi-Level Models
Example: Selection Effects
Hierarchical Models and Shrinkage

Example: High-Energy Spectral Modeling
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From van Dyk et al. (2001) ApJ, 548, 224-243
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The Expanding Universe
Redshift

http://www.noao.edu/image_gallery/html/im0566.html

For “nearby” objects,
z “ velocity{c

velocity “ H0 distance.

Hubble’s Famous Diagram

Hubble (1929)

The Big Bang!
David A. van Dyk Bayesian Astrostatistics: Part III
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Distance Modulus in an Expanding Universe

Apparent magnitude - Absolute magnitude = Distance modulus:
m ´ M “ µ

“
= 5 log10(distance [Mpc]) + 25

ı

Relationship between µ and z

For nearby objects,
distance “ µ 9 z.
(Correcting for peculiar/local velocities.)

For distant objects, involves
expansion history of Universe:

µ “ gpz,⌦⇤,⌦M , H0q
[function of density of dark energy and of total matter] http://skyserver.sdss.org/dr1/en/astro/universe/universe.asp

We observe M only if m † (say) 24.
I.e., we observe M only if M “ m ´ µpzq † 24 ´ µpzq ” F pzq.

David A. van Dyk Bayesian Astrostatistics: Part III
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A Multilevel Model for Selection Effects
We wish to estimate a dist’n of absolute magnitudes, Mi ,

Suppose Mi „ NORMpµ, �2q, for i “ 1, . . . , n;
But Mi is only observed if Mi † F pziq1; [z is redshift, see next slide]

Observe N † n objects including zi ; ✓ “ pµ, �2q estimated.
(For µ “ ´19.3 and � “ 1.)

1Mi observed if † Fpzi q “ 24 ´ µpzi q; µpzi q from ⇤-CDM model (⌦m “ 0.3, ⌦ “ 0, H0 “ 67.3).

David A. van Dyk Bayesian Astrostatistics: Part III
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Model 1: Ignore Selection Effect

Likelihood: Mi |✓, zi „ NORMpµ, �2q, for i “ 1, . . . , N;

Prior: µ „ NORMpµ0, ⌧
2q, and �2 „ �2{�2

⌫ ;

Posterior: µ | pM1, . . . Mn, �2q „ NORMp¨, ¨q and
.

�2 | pM1, . . . Mn, µq „ ¨{�2
(Details on next slide.)

Definition
If (some set of) conditional distributions of the prior and the
posterior distributions are of the same family, the prior dist’n is
called that likelihood’s semi-congutate prior distribution.

Semi-conjugate priors are very amenable to the Gibbs sampler.

David A. van Dyk Bayesian Astrostatistics: Part III
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Gibbs Sampler for Model 1

Step 1: Update µ from its conditional posterior dist’n given �2:

µpt`1q „ NORM
´
µ̄, s2

µ

¯

with
µ̄ “

´ ∞N
i“1 Mi

p�2qptq ` µ0
⌧2

¯M´
N

p�2qptq ` 1
⌧2

¯
; s2

µ “
´

N
p�2qptq ` 1

⌧2

¯´1
.

Step 2: Update �2 from its conditional posterior dist’n given µ:

p�2qpt`1q „
«

Nÿ

i“1

`
Mi ´ µpt`1q˘2 ` �2

�
L
�2

N`⌫ .

In this case, resulting sample is nearly independent.
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A Closer Look at Conditional Posterior: Step 1

Given �2:
Likelihood: Mi |✓, zi „ NORMpµ, �2q, for i “ 1, . . . , N;

Prior: µ „ NORMpµ0, ⌧
2q

Posterior: µ | pM1, . . . Mn, �2q „ NORMpµ̄, s2
µq with

µ̄ “
˜∞N

i“1 Mi

�2 ` µ0

⌧2

¸ M ˆ
N
�2 ` 1

⌧2

˙
; s2

µ “
ˆ

N
�2 ` 1

⌧2

˙´1
.

Posterior mean is a weighted average of sample mean
( 1

N
∞N

i“1 Mi ) and prior mean (µ0), with weights N
�2 and 1

⌧2 .

Compare s2
µ with Var

´
1
N

∞N
i“1 Mi

¯
“ �2

N .
Reference prior sets µ0 “ 0 and ⌧2 “ 8. (Improper and flat on µ.)

David A. van Dyk Bayesian Astrostatistics: Part III
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A Closer Look at Conditional Posterior: Step 2

Given µ:

Likelihood: Mi |✓, zi „ NORMpµ, �2q, for i “ 1, . . . , N;

Prior: �2 „ �2{�2
⌫ ;

Posterior:

p�2qpt`1q | pM1, . . . Mn, µq „
«

Nÿ

i“1

`
Mi ´ µpt`1q˘2 ` �2

� M
�2

N`⌫ .

The prior has the affect of adding ⌫ additional data points
with variance �2.
Reference prior sets ⌫ “ �2 “ 0. (Improper and flat on logp�2q.)

David A. van Dyk Bayesian Astrostatistics: Part III
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Model 2: Account for Selection Effect

Likelihood: The distribution of the observed magnitudes:

ppMi |Oi “ 1, ✓, ziq “ PrpOi “ 1|Mi , zi , ✓qppMi |✓, ziq≥
PrpOi “ 1|Mi , zi , ✓qppMi |✓, ziqdMi

;

Here
Mi |✓, zi „ NORMpµ, �2q and
PrpOi “ 1|Mi , zi , ✓qq “ IndicatortMi † F pziqu

So Mi |pOi “ 1, ✓, ziq „ TRUNNORMrµ, �2;F pziqs.

Prior: µ „ NORMpµ0, ⌧
2q, �2 „ �2{�2

⌫ ;

Posterior: Prior is not conjugate, posterior is not standard.

David A. van Dyk Bayesian Astrostatistics: Part III
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MH within Gibbs for Model 2

Neither step of the Gibbs Sampler is a standard dist’n:

Step 1: Update µ from its conditional dist’n given �2

Use Random-Walk Metropolis with a
NORMpµptq, s2

1q proposal distribution.

Step 2: Update �2 from its conditional dist’n given µ

Use Random-Walk Metropolis Hastings with a
LOGNORM

“
log

`
�2 ptq˘, s2

2
‰

proposal distribution.2

Adjust s2
1 and s2

2 to obtain an acceptance rate of around 40%.

2If X „ LOGNORMpµ,�2q then logpX q „ NORMpµ,�2q.
David A. van Dyk Bayesian Astrostatistics: Part III
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Simulation Study I

Sample Mi „ NORMpµ “ ´19.3, � “ 1) for i “ 1, . . . , 200.
Sample zi from ppzq9p1 ` zq2, yielding N “ 112.

David A. van Dyk Bayesian Astrostatistics: Part III
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Simulation I (µ0 “ ´19.3, �m “ 20, ⌫ “ 0.02, �2 “ 0.02)

David A. van Dyk Bayesian Astrostatistics: Part III
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Simulation Study II

Sample Mi „ NORMpµ “ ´19.3, � “ 3) for i “ 1, . . . , 200.
Sample zi from ppzq9p1 ` zq2, yielding N “ 101.

David A. van Dyk Bayesian Astrostatistics: Part III
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Simulation II (µ0 “ ´19.3, �m “ 20, ⌫ “ 0.02, �2 “ 0.02)
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Frequentists Origins of Hierarchical Models

Suppose we wish to estimate a parameter, ✓, from repeated
measurements:

yi
indep„ NORMp✓,�2q for i “ 1, . . . , n

E.g.: calibrating a detector from n measures of known source.

An obvious estimator:

✓̂naive “ 1
n

nÿ

i“1

yi

What is not to like about the arithmetic average?

David A. van Dyk Bayesian Astrostatistics: Part III
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Frequency Evaluation of an Estimator

How far off is the estimator?

p✓̂ ´ ✓q2

How far off do we expect it to be?

MSEp✓̂|✓q “ E
”
p✓̂ ´ ✓q2 | ✓

ı
“

ª ´
✓̂pyq ´ ✓

¯2
fY py |✓qdy

This quantity is called the Mean Square Error of ✓̂.
An estimator is said to be inadmissible if there is an
estimator that is uniformly better in terms of MSE:

MSEp✓̂|✓q † MSEp✓̂naive|✓q for all ✓.

David A. van Dyk Bayesian Astrostatistics: Part III
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Mean Square Error: An Illustration

EXAMPLE: Suppose H „ BINOMIALpn “ 3, ⇡q.

Recall:
If H|n, ⇡

dist„ BINOMIALpn, ⇡q and ⇡
dist„ BETAp↵, �q

then ⇡|H, n dist„ BETAph ` ↵, n ´ h ` �q.

Consider four estimates of ⇡:
iq ⇡̂1 “ H{n, the maximum likelihood estimator of ⇡;
iiq ⇡̂2 “ Ep⇡|Hq, where ⇡ has prior distribution ⇡ „ Betap1, 1q
iiiq ⇡̂3 “ Ep⇡|Hq, where ⇡ has prior distribution ⇡ „ Betap1, 4q
ivq ⇡̂4 “ Ep⇡|Hq, where ⇡ has prior distribution ⇡ „ Betap4, 1q

David A. van Dyk Bayesian Astrostatistics: Part III



Figs/uci

Model Building
Extended Modeling Examples

Multi-Level Models
Example: Selection Effects
Hierarchical Models and Shrinkage

Frequency Properties of Estimators and Intervals
Remember: If the data is a random sample of all possible data, the
estimator ⇡̂i is also random. It has a distribution, mean, and variance.

We can evaluate the ⇡̂i as an estimator of ⇡ in terms of its
bias: Ep⇡̂i | ⇡q ´ ⇡ (Is bias bad??)

variance: E
”`

⇡̂i ´ Ep⇡̂i | ⇡q
˘2 | ⇡

ı

mean square error: E
“
p⇡̂i ´ ⇡q2 | ⇡

‰
“ bias2 ` variance
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MSE of Four Estimators of Binomial Probability
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The MSE (of all four estimators) depends on true p “ ⇡.
In this case: no evidence of inadmissiblity.
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Inadmissibility of the Sample Mean

Suppose we wish to estimate more than one parameter:

yij
indep„ NORMp✓j , �

2q for i “ 1, . . . , n and j “ 1, . . . , G

The obvious estimator:

✓̂naive
j “ 1

n

nÿ

i“1

yij is inadmissible if G • 3.

The James-Stein Estimator dominates ✓naive:

✓̂JS
j “

`
1 ´ !JS˘

✓̂naive
j ` !JS⌫ for any ⌫

with !JS « �2{n
�2{n ` ⌧2

⌫
and ⌧2

⌫ “ Erp✓i ´ ⌫q2s.
Specifically, !JS “ pG ´ 2q�2

M
n

∞G
j“1p✓̂naive

j ´ ⌫q2.

David A. van Dyk Bayesian Astrostatistics: Part III
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Shrinkage Estimators

James-Stein Estimator is a shrinkage estimator:

✓̂JS
j “

´
1 ´ !JS

¯
✓̂naive

j ` !JS⌫
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To Where Should We Shrink?

James-Stein Estimators
Dominate the sample average for any choice of ⌫.
Shrinkage is mild and ✓̂JS « ✓̂naive for most ⌫.
Can we choose ⌫ to maximize shrinkage?

✓̂JS
j “

`
1 ´ !JS˘

✓̂naive
j ` !JS⌫

with !JS « �2{n
�2{n ` ⌧2

⌫
and ⌧2

⌫ “ Erp✓i ´ ⌫q2s.

Minimize ⌧2.

The optimal choice of ⌫ is the average of the ✓j .

David A. van Dyk Bayesian Astrostatistics: Part III
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Illustration

Suppose:
yj „ NORMp✓j , 1q for j “ 1, . . . , 10
✓j are evenly distributed on [0,1]

MSEp✓̂naiveq versus MSEp✓̂JSq
(summing over the 10 estimators)
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Illustration

Suppose:
yj „ NORMp✓j , 1q for j “ 1, . . . , 10
✓j are evenly distributed on [-4,5]

MSEp✓̂naiveq versus MSEp✓̂JSq
(summing over the 10 estimators)
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Intuition

1 If you are estimating more than two parameters, it is
always better to use shrinkage estimators.

2 Optimally shrink toward average of the parameters.
3 Most gain when the naive (non-shrinkage) estimators

are noisy (�2 is large)
are similar (⌧2 is small)

4 Bayesian versus Frequentist:
From frequentist point of view this is somewhat problematic.
From a Bayesian point of view this is an opportunity!

5 James-Stein is a milestone in statistical thinking.
Results viewed as paradoxical and counterintuitive.
James and Stein are geniuses.

David A. van Dyk Bayesian Astrostatistics: Part III
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Bayesian Perspective

Frequentist tend to avoid quantities like:
1 Ep✓jq and Varp✓jq
2 E

“
p✓j ´ ⌫q2‰

From a Bayesian point of view it is quite natural to consider
1 the distribution of a parameter or
2 the common distribution of a group of parameters.

Models that are formulated in terms of the latter are
Hierarchical Models.

David A. van Dyk Bayesian Astrostatistics: Part III
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A Simple Bayesian Hierarchical Model

Suppose

yij |✓j
indep„ NORMp✓j , �

2q for i “ 1, . . . , n and j “ 1, . . . , G

with
✓j

indep„ NORMpµ, ⌧2q.
Let � “ p�2, ⌧2, µq

Ep✓j | Y , �q “ p1 ´ !HBq✓̂naive ` !HBµ with !HB “ �2{n
�2{n ` ⌧2 .

The Bayesian perspective
automatically picks the best ⌫,
provides model-based estimates of �,
requires priors be specified for �2, ⌧2, and µ.

David A. van Dyk Bayesian Astrostatistics: Part III
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Color Correction Parameter for SNIa Lightcurves

SNIa light curves vary systematically across color bands.
Color Correction: Measure the peakedness of color dist’n.
Details in the next section!!
A hierarchical model:

ĉj |cj
indep„ NORMpcj , �

2
j q for j “ 1, . . . , 288

with
cj

indep„ NORMpc0, R2
c q and ppc0, Rcq91.

The measurement variances, �2
j are assumed known.

We could estimate each cj via ĉj ˘ �j , or...

David A. van Dyk Bayesian Astrostatistics: Part III
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Fitting the Hierarchical Model with Gibbs Sampler

ĉj |cj
indep„ NORMpcj , �2

j q for j “ 1, . . . , G

cj
indep„ NORMpc0, R2

c q and ppc0, Rcq91.

To Derive the Gibbs Sampler Note:

1 Given pc0, R2
Cq, a standard Gaussian model for each j :

ĉj |cj
indep„ NORMpcj , �

2
j q with cj

indep„ NORMpc0, R2
c q.

2 Given c1, . . . , cG, another standard Gaussian model:

cj
indep„ NORMpc0, R2

c q with ppc0, Rcq91.

David A. van Dyk Bayesian Astrostatistics: Part III
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Fitting the Hierarchical Model with Gibbs Sampler

The Gibbs Sampler:

Step 1: Sample c1, . . . , cG from their joint posterior given
pc0, R2

Cq:

cptq
j

ˇ̌
ˇ pĉj , cpt´1q

0 , pR2
Cqpt´1qq „ NORM

`
µj , s2

j
˘

µj “
´

ĉj

�2
j

` cpt´1q
0

pR2
C qpt´1q

¯M´
1
�2

j
` 1

pR2
C qpt´1q

¯
; s2

j “
´

1
�2

j
` 1

pR2
C qpt´1q

¯´1
.

Step 2: Sample pc0, R2
Cq from their joint posterior given c1, . . . cG :

pR2
Cqptq ˇ̌

pcptq
1 , . . . , cptq

G q „
∞G

j“1pcptq
j ´ c̄q2

�2
G´2

with c̄ “ 1
G

Gÿ

j“1

cptq
j

cptq
0

ˇ̌
pcptq

1 , . . . , cptq
G q, pR2

Cqptq „ NORM
´

c̄, pR2
Cqptq{G

¯

David A. van Dyk Bayesian Astrostatistics: Part III
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The Bayesian Perspective

Advantages of Bayesian Perspective:
The advantage of James-Stein estimation is automatic.
James and Stein had to find their estimator!
Bayesians have a method to generate estimators.
Even frequentists like this!
General principle is easily tailored to any problem.
Specification of level two model may not be critical.
James-Stein derived same estimator using only moments.

Cautions:
Results can depend on prior distributions for parameters
that reside deep within the model, and far from the data.
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The Choice of Prior Distribution

Suppose

yij |✓j
indep„ NORMp✓j , �

2q for i “ 1, . . . , n and j “ 1, . . . , G

with
✓j

indep„ NORMpµ, ⌧2q.

Reference prior for normal variance: pp�2q91{�2, flat on logp�2q
Using this prior for the level-two variance,

pp⌧2q91{⌧2

leads to an improper posterior distribution:

pp⌧2|y , �2q9pp⌧2q
d

Varpµ|y , ⌧q
p�2{n ` ⌧2qG exp

$
&

%

Gÿ

j“1
´ pȳ¨j ´ Epµ|y , ⌧2qq2

2p�2{n ` ⌧2q

,
.

-
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Outline

1 Model Building
Multi-Level Models
Example: Selection Effects
Hierarchical Models and Shrinkage

2 Extended Modeling Examples
Hierarchical Model: Supernovae & Cosmology
Non-Representiative Data and StratLearn
Discussion
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The Expanding Universe
Redshift

http://www.noao.edu/image_gallery/html/im0566.html

For “nearby” objects,

z “ redshift 9 velocity
“ H0 distance.

Hubble’s Famous Diagram

Hubble (1929)

The Big Bang!
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Distance Modulus in an Expanding Universe

Apparent magnitude - Absolute magnitude = Distance modulus:
m ´ M “ µ

“
= 5 log10(distance [Mpc]) + 25

ı

Relationship between µ and z

For nearby objects,
distance “ µ 9 z.
(Correcting for peculiar/local velocities.)

For distant objects, involves
expansion history of Universe:

µ “ gpz,⌦⇤,⌦M , H0q
[function of density of dark energy and of total matter] http://skyserver.sdss.org/dr1/en/astro/universe/universe.asp

If we observe both m and M we can infer
µ and the cosmological parameters.
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Type Ia Supernovae

If mass surpasses “Chandrasekhar threshold” of 1.44M@...

Image Credit: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snovcn.html

Due to their common “flashpoint”, SN1a have similar absolute
magnitudes:

Mj „ NORMpM0, �
2
intq.

Non-linear Regression: mBj “ gpzj ,⌦⇤,⌦M , H0q ` Mj
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Phillips Corrections
Recall:
Mj „ NORMpM0, �

2
intq.

Regression:
Mj “ ´↵xj ` �cj ` M✏

j ,

M✏
j „ NORMpM0,�

2
✏q.

xj is a LC stretch
cj is color correction.

�2
✏ § �2

int

Reduce variance, increase
precision of estimates.

Roberto Trotta ADA VII, May 2012

Brightness-width relationship 

LC decline rate

SN
Ia 
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e 
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ag
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BRIGHTER

FAINTER

~ factor of 3

residual scatter 
~ 0.2 mag
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99
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Even SN with low extinction benefit from observations in
the H-band by reducing the uncertainty in the dust es-
timate. Table 4 lists summary statistics of the marginal
posterior distribution of each host galaxy dust parameter
for each SN, obtained from the MCMC samples.

5.2. Intrinsic Correlation Structure of SN Ia Light
curves in the Optical-NIR

We use the hierarchical model to infer the intrinsic
correlation structure of the absolute SN Ia light curves.
This correlation structure captures the statistical rela-
tionships between peak absolute magnitudes and decline
rates of light curves in multiple filters at different wave-
lengths and phases. We summarize inferences about light
curve shape and luminosity across the optical and near
infrared filters; a more detailed analysis of the intrin-
sic correlation structure of colors, luminosities and light
curve shapes will be presented elsewhere.

5.2.1. Intrinsic Scatter Plots

The hierarchical model fits the individual light curves
with the differential decline rates model and infers the
absolute magnitudes in multiple passbands, corrected for
host galaxy dust extinction. For each individual SN light
curve, we can use the inferred local decline rates dF to
compute the ∆m15(F ) of the light curve in each filter. In
the left panel of Figure 4, we plot the posterior estimate
of the peak absolute magnitude MB versus its canoni-
cal ∆m15(B) decline rate with black points. The error
bars reflect measurement errors and the marginal uncer-
tainties from the distance and inferred dust extinction.
This set of points describes the well-known intrinsic light
curve decline rate versus luminosity relationship (Phillips
1993). We also show the mean linear relation between
MB and ∆m15(B) found by Phillips et al. (1999), who
analyzed a smaller sample of SN Ia. The statistical trend
found by our model is consistent with that analysis. The
red points are simply the peak apparent magnitudes mi-
nus the distance moduli, B0 − µ, which are the extin-
guished peak absolute magnitudes MB + AB. Whereas
the range of extinguished magnitudes spans ∼ 3 magni-
tudes, the intrinsic absolute magnitudes lie along a nar-
row, roughly linear trend with ∆m15(B).

In the right panel, we plot the intrinsic and ex-
tinguished absolute magnitudes of SN Ia in the H-
band. In contrast to the left panel, the differences
between the intrinsic absolute magnitudes and the ex-
tinguished magnitudes are nearly negligible. Notably,
there is no correlation between the intrinsic MH in
the NIR and optical ∆m15(B). This was noted previ-
ously by Krisciunas et al. (2004a) and Wood-Vasey et al.
(2008). The standard deviation of absolute magnitudes
is much smaller in H than in B, demonstrating that
the NIR SN Ia light curves are good standard can-
dles (Krisciunas et al. 2004a,c; Wood-Vasey et al. 2008;
Mandel et al. 2009). Theoretical models of Kasen (2006)
indicate that NIR peak absolute magnitudes have rela-
tively weak sensitivity to the input progenitor 56Ni mass,
with a dispersion of ∼ 0.2 mag in J and K, and ∼ 0.1
mag in H over models ranging from 0.4 to 0.9 solar
masses of 56Ni. The physical explanation may be traced
to the ionization evolution of the iron group elements in
the SN atmosphere.
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B0−µ
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Fig. 4.— (left) Post-maximum optical decline rate ∆m15(B) ver-
sus posterior estimates of the inferred optical absolute magnitudes
MB (black points) and the extinguished magnitudes B0 − µ (red
points). Each black point maps to a red point through optical
dust extinction in the host galaxy. The intrinsic light curve width-
luminosity Phillips relation is reflected in the trend of the black
points, indicating that SN brighter in B have slower decline rates.
The blue line is the linear trend of Phillips et al. (1999). (right)
Inferred absolute magnitudes and extinguished magnitudes in the
near infrared H-band. The extinction correction, depicted by the
difference between red and black points, is much smaller in H than
in B. The absolute magnitudes MH have no correlation with the
∆m15(B). The standard deviation of peak absolute magnitudes is
also much smaller for MH compared to MB .

These scatter plots convey some aspects of the popu-
lation correlation structure of optical and near infrared
light curves that is captured by the hierarchical model.
In the next section, we further discuss the multi-band
luminosity and light curve shape correlation structure in
terms of the estimated correlation matrices.

Figure 5 shows scatter plots of optical-near infrared
colors (B−H, V −H, R−H, J −H) versus absolute mag-
nitude (MB, MV , MR, MH) at peak. The blue points are
the posterior estimates of the inferred peak intrinsic col-
ors and absolute magnitudes of the SN, along with their
marginal uncertainties. Red points are the peak apparent
colors and extinguished absolute magnitudes, including
host galaxy dust extinction and reddening. These plots
show correlations between the peak optical-near infrared
colors and peak optical luminosity, in the direction of in-
trinsically brighter SN having bluer peak colors. In con-
trast, the intrinsic J − H colors have a relatively narrow
distribution, and the near infrared absolute magnitude
MH is uncorrelated with intrinsic J − H color.

5.2.2. Intrinsic Correlation Matrices

Using the hierarchical model, we compute posterior in-
ferences of the population correlations between the dif-
ferent components of the absolute light curves of SN Ia.
This includes population correlations between peak ab-
solute magnitudes in different filters, ρ(MF , MF ′), cor-
relations between the peak absolute magnitudes and
light curve shape parameters (differential decline rates)
in different filters, ρ(MF , dF ′

), and the correlations be-
tween light curve shape parameters in different filters,
ρ(dF , dF ′

). They also imply correlations between these
quantities and intrinsic colors. This information and its
uncertainty is captured in the posterior inference of the
population covariance matrix Σψ of the absolute light

M
an

de
l e

t a
l (2

01
1)

Light curve stretch

Before dust 
correction

After dust 
correction

Low-z calibration sample

Brighter SNIa are slow decliners

B band

V band

I band

7

Brighter SNIa are slower decliners over time.
Non-linear Regression: mBj “ gpzj ,⌦⇤,⌦M , H0q ` ↵xj ` �cj ` M✏

j
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Predicting Absolute Magnitude

SN1a absolute magnitudes are correlated with characteristics
of the explosion / light curve:

xj : rescale light curve to match mean template
cj : describes how flux depends on color (spectrum)

Credit: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snovcn.html

David A. van Dyk Bayesian Astrostatistics: Part III



Figs/uci

Model Building
Extended Modeling Examples

Hierarchical Model: Supernovae & Cosmology
Non-Representiative Data and StratLearn
Discussion

A Hierarchical Model.
Level 1:3 cj , xj , and mBj are observed with error.

¨

˝
ĉj
x̂j

m̂Bj

˛

‚„ NORM

$
&

%

¨

˝
cj
xi

mBj

˛

‚, Ĉj

,
.

- .

Level 2:
1 cj „ NORMpc0, R2

c q
2 xj „ NORMpx0, R2

x q
3 The conditional dist’n of mBj given cj and xj is specified via

mBj “ µj ` M✏
j ´ ↵xj ` �cj ,

with µj “ gpzj ,⌦⇤,⌦M , H0q and M✏
j „ NORMpM0, �2

✏ q.
Level 3: Priors on ↵, �, ⌦⇤, ⌦M , H0, c0, R2

c , x0, R2
x M0, �2

✏
3Shariff et al (2016). BAHAMAS: SNIa Reveal Inconsistencies with Standard Cosmology. ApJ 827, 1.
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Other Model Features

Results are based on an SDSS (2009) sample of 288 SNIa.4

In our full analysis, we also
1 account for systematic errors that have the effect of

correlating observation across supernovae,
2 allow the mean and variance of M✏

i to differ for galaxies
with stellar masses above or below 1010 solar masses, and

3 use a larger JLA sample5 of 740 SNIa observed with
SDSS, HST, and SNLS.

4Shariff et al (2016). BAHAMAS: New SNIa Analysis Reveals Inconsistencies with
Standard Cosmology. ApJ 827, 1.

5Betoule, et al., 2014, arXiv:1401.4064v1
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Shrinkage Estimates in Hierarchical Model
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Shrinkage Errors in Hierarchical Model
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Fitting Absolute Magnitudes Without Shrinkage

Under the model, absolute magnitudes are given by

M✏
j “ mBj ´ µj ` ↵xj ´ �cj with µi “ gpzj ,⌦⇤,⌦M , H0q

Setting
1 ↵, �,⌦⇤, and ⌦M to their minimum �2 estimates,
2 H0 “ 72km{s{Mpc, and
3 mBj , xj , and cj to their observed values

we have

M̂✏
j “ m̂Bi ´ gpẑj , ⌦̂⇤, ⌦̂M , Ĥ0q ` ↵̂x̂j ´ �̂ĉj

with error

«
b

Varpm̂Bjq ` ↵̂2Varpx̂jq ` �̂2Varpĉjq
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Comparing the Estimates
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Model Checking

We model:

mBi “ gpzi ,⌦⇤,⌦M , H0q ´ ↵xi ` �ci ` M✏
i

How good of a fit is the cosmological model,
gpzi ,⌦⇤,⌦M ,H0q?

We can check the model by adding a cubic spline term:

mBi “ gpzi ,⌦⇤,⌦M , H0q ` hpziq ´ ↵xi ` �ci ` M✏
i

where, hpziq is cubic spline term with K knots.
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Model Checking

Fitted cubic spline, hpzq, and its errors:2.2 Nonparametric Regression:
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Figure 4: Nonparametric regression(K = 4).
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Figure 5: Nonparametric regression(K = 9).
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2.2 Nonparametric Regression:
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Figure 4: Nonparametric regression(K = 4).
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Figure 5: Nonparametric regression(K = 9).
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Can use similar methods to compare with
competing cosmological models.
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Model Building
Extended Modeling Examples

Hierarchical Model: Supernovae & Cosmology
Non-Representiative Data and StratLearn
Discussion

Classification of Sources

Image Credit: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snovcn.html

Due to common “flashpoint”, SN1a have similar absolute magnitudes:

Mj „ NORMpM0,�
2
intq.

Non-linear Regression: mBj “ gpzj ,⌦⇤,⌦M ,H0q ` Mj

It is critical that we are able to identify a sample
of Type 1a Supernovae.
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Figs/uci

Model Building
Extended Modeling Examples

Hierarchical Model: Supernovae & Cosmology
Non-Representiative Data and StratLearn
Discussion

Identifying Type Ia SN is Critical

http://supernova.lbl.gov/~dnkasen/tutorial/

Spectral Classification
Type Ia

Reignition of nuclear
fusion in WD.
No Hydrogen,
strong Silicon

Others
Gravitational collapse
in massive stellar core.
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Model Building
Extended Modeling Examples

Hierarchical Model: Supernovae & Cosmology
Non-Representiative Data and StratLearn
Discussion

Spectroscopic and Photometric Data
Spectroscopic Redshift

http://www.noao.edu/image_gallery/html/im0566.html

Can we Train a Classifier
Train on Spectroscopic
Target = Photometric

Photometric Redshift

https://inspirehep.net/record/1202215/plots

Integrated average in
each passband.
More readily available,
but far less informative.
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Hierarchical Model: Supernovae & Cosmology
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Discussion

Gaussian Process Interpoloation
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Figure 1. An example of LC data in four bands for (the randomly
selected) SN194156 at z = 0.54. Vertical 1‡ error bars are also
plotted.

behaviour (in the g band) that some SNe exhibit in one or
more bands and the more ‘well behaved’ peak structure that
is typically associated with SNIa explosions.

The simulated dataset from Kessler et al. (2010a) is di-
vided into a training set, Btrain, of 1,217 SNe with known
types and a test set, Btest, of 16,113 simulated SNe with un-
known types. Btrain is obtained by simulating the spectro-
scopic follow-up e�ciency from a 4m class telescope with a
limiting r-band magnitude of 21.5, and an 8m class telescope
with a limiting i-band magnitude of 23.5. SNIa LCs are sim-
ulated from a mix of SALT-II and MLCS models, while non-
SNIa are simulated from a set of 41 templates derived from
spectroscopically confirmed non-SNIa (Kessler et al. 2010b).
The goal is to use Btest to classify the SN in Btest. Due to
observational selection e�ects, the spectroscopic training set
is biased in terms of SN types, redshift, and brightness. This
bias is mimicked in the dataset of Kessler et al. (2010a) so
that there are proportionally more bright, low redshift SNIa
in Btrain than in Btest.

We also construct an unbiased training set, Utrain, by
random sampling 1,200 SNe from the entire dataset. Here
we exploit the fact that the classes of the entire dataset
was released post challenge. The remaining data is assigned
to a corresponding test set, Utest, used for evaluating the
performance of the classifier. For consistency, the sizes of
Utrain and Btrain are similar. We refer to the Utrain as ‘the
gold standard’, as it is a ‘best case scenario’ to compare any
classification algorithm against. Although, such an unbiased
training set is not feasible in practice, we want to assess the
reduction in the classifier performance that can be attrib-
uted to the bias in Btrain. The composition of both training
and test sets is summarized in Table 1.

2.2 Modelling Light Curves with Gaussian
Processes

Let X(t) be a stochastic process with continuous time in-
dex, t, in some time interval, T . We say X(t) follows a
Gaussian Process (GP) (e.g., Adler 1990), if the finite di-

mensional distribution, p(X(t1), . . . , X(tk)), is (multivari-
ate) Gaussian for any positive integer, k, and any set of
time points t1, . . . , tk in T . Two key theoretical results are
the existence and uniqueness of the Gaussian process. Spe-
cifically, a GP is uniquely determined by its mean function,

µ(t) = E[X(t)] (1)

and its covariance function,

K(t, s) = E
#
{X(t)≠ µ(t)}T {X(s)≠ µ(s)}

$
, (2)

where t and s are any two time points in T . Conversely for
any given mean and covariance functions, there exists a GP
with these mean and covariance functions. (For previous ap-
plications of GP regression to SN LC fitting, see Kim et al.
(2013).)

The key result that allows us to use GPs to
model time series such as LCs stems from the condi-
tioning rule for multivariate Gaussian distributions (e.g.,
Rasmussen & Williams 2006). Suppose, for example, that
X follows a multivariate Gaussian distribution with mean
vector m and variance matrix �, i.e., X ≥ N(m,�), and
partition

X =
;
X1
X2

<
, m =

;
m1
m2

<
, and � =

5
�11 �12
�21 �22

6
.

The conditional distribution of X2 given X1 is also a (mul-
tivariate) Gaussian, specifically X2 | X1 ≥ N(mú,�ú) with

mú = E[X2|X1] = m2 + �21�≠1
11 (X1 ≠m1)

�ú = Var(X2|X1) = �22 ≠ �21�≠1
11 �12.

(3)

Turning to the modeling of LCs, let f(t) denote an un-
observed SN LC continuous in time. Suppose that

f ≥ GP (µ,K), (4)

where GP (µ,K) denotes a GP with mean and covariance
functions µ and K. (Here and elsewhere we suppress the
dependence of f , µ, and K on time.) In practice, we must
specify the functional forms of µ and K, typically in terms of
several unknown parameters. For the moment, we assume µ
and K are given, putting o� discussion of their specification
until Section 2.3.

Because the distribution of f(t) at any finite set of time
points is multivariate Gaussian, given a series of observa-
tions we can simply apply the formulas in (3) to obtain the
conditional distribution of f(t) at any other finite set of
time points given the observed values. In this way, we can
interpolate f(t) between the observed values. Specifically,
if we measure at n points in time a vector of observations
fobs = (f(t1), . . . , f(tn)), we can obtain the conditional dis-
tribution of f(t) at another set of k time points, namely
f̃ = (f(t̃1), . . . , f(t̃k)), by conditioning on the observations,

f̃ | fobs =

Q

ca
f(t̃1)

...
f(t̃k)

R

db

-------

Q

ca
f(t1)

...
f(tn)

R

db ≥ Nk (mú,�ú) , (5)

where mú and �ú are in (3) with m1 = (µ(t1), . . . , µ(tn))T ,
m2 =

!
µ(t̃1), . . . , µ(t̃k)

"T , �11 = K(t, t), �12 = K(t, t̃),
�21 = �T

12, and �22 = K(t̃, t̃), where K(t, t̃) is a matrix
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Figure 1. An example of LC data in four bands for (the randomly
selected) SN194156 at z = 0.54. Vertical 1‡ error bars are also
plotted.

behaviour (in the g band) that some SNe exhibit in one or
more bands and the more ‘well behaved’ peak structure that
is typically associated with SNIa explosions.

The simulated dataset from Kessler et al. (2010a) is di-
vided into a training set, Btrain, of 1,217 SNe with known
types and a test set, Btest, of 16,113 simulated SNe with un-
known types. Btrain is obtained by simulating the spectro-
scopic follow-up e�ciency from a 4m class telescope with a
limiting r-band magnitude of 21.5, and an 8m class telescope
with a limiting i-band magnitude of 23.5. SNIa LCs are sim-
ulated from a mix of SALT-II and MLCS models, while non-
SNIa are simulated from a set of 41 templates derived from
spectroscopically confirmed non-SNIa (Kessler et al. 2010b).
The goal is to use Btest to classify the SN in Btest. Due to
observational selection e�ects, the spectroscopic training set
is biased in terms of SN types, redshift, and brightness. This
bias is mimicked in the dataset of Kessler et al. (2010a) so
that there are proportionally more bright, low redshift SNIa
in Btrain than in Btest.

We also construct an unbiased training set, Utrain, by
random sampling 1,200 SNe from the entire dataset. Here
we exploit the fact that the classes of the entire dataset
was released post challenge. The remaining data is assigned
to a corresponding test set, Utest, used for evaluating the
performance of the classifier. For consistency, the sizes of
Utrain and Btrain are similar. We refer to the Utrain as ‘the
gold standard’, as it is a ‘best case scenario’ to compare any
classification algorithm against. Although, such an unbiased
training set is not feasible in practice, we want to assess the
reduction in the classifier performance that can be attrib-
uted to the bias in Btrain. The composition of both training
and test sets is summarized in Table 1.

2.2 Modelling Light Curves with Gaussian
Processes

Let X(t) be a stochastic process with continuous time in-
dex, t, in some time interval, T . We say X(t) follows a
Gaussian Process (GP) (e.g., Adler 1990), if the finite di-

mensional distribution, p(X(t1), . . . , X(tk)), is (multivari-
ate) Gaussian for any positive integer, k, and any set of
time points t1, . . . , tk in T . Two key theoretical results are
the existence and uniqueness of the Gaussian process. Spe-
cifically, a GP is uniquely determined by its mean function,

µ(t) = E[X(t)] (1)

and its covariance function,

K(t, s) = E
#
{X(t)≠ µ(t)}T {X(s)≠ µ(s)}

$
, (2)

where t and s are any two time points in T . Conversely for
any given mean and covariance functions, there exists a GP
with these mean and covariance functions. (For previous ap-
plications of GP regression to SN LC fitting, see Kim et al.
(2013).)

The key result that allows us to use GPs to
model time series such as LCs stems from the condi-
tioning rule for multivariate Gaussian distributions (e.g.,
Rasmussen & Williams 2006). Suppose, for example, that
X follows a multivariate Gaussian distribution with mean
vector m and variance matrix �, i.e., X ≥ N(m,�), and
partition

X =
;
X1
X2

<
, m =

;
m1
m2

<
, and � =

5
�11 �12
�21 �22

6
.

The conditional distribution of X2 given X1 is also a (mul-
tivariate) Gaussian, specifically X2 | X1 ≥ N(mú,�ú) with

mú = E[X2|X1] = m2 + �21�≠1
11 (X1 ≠m1)

�ú = Var(X2|X1) = �22 ≠ �21�≠1
11 �12.

(3)

Turning to the modeling of LCs, let f(t) denote an un-
observed SN LC continuous in time. Suppose that

f ≥ GP (µ,K), (4)

where GP (µ,K) denotes a GP with mean and covariance
functions µ and K. (Here and elsewhere we suppress the
dependence of f , µ, and K on time.) In practice, we must
specify the functional forms of µ and K, typically in terms of
several unknown parameters. For the moment, we assume µ
and K are given, putting o� discussion of their specification
until Section 2.3.

Because the distribution of f(t) at any finite set of time
points is multivariate Gaussian, given a series of observa-
tions we can simply apply the formulas in (3) to obtain the
conditional distribution of f(t) at any other finite set of
time points given the observed values. In this way, we can
interpolate f(t) between the observed values. Specifically,
if we measure at n points in time a vector of observations
fobs = (f(t1), . . . , f(tn)), we can obtain the conditional dis-
tribution of f(t) at another set of k time points, namely
f̃ = (f(t̃1), . . . , f(t̃k)), by conditioning on the observations,

f̃ | fobs =

Q

ca
f(t̃1)

...
f(t̃k)

R

db

-------

Q

ca
f(t1)

...
f(tn)

R

db ≥ Nk (mú,�ú) , (5)

where mú and �ú are in (3) with m1 = (µ(t1), . . . , µ(tn))T ,
m2 =

!
µ(t̃1), . . . , µ(t̃k)

"T , �11 = K(t, t), �12 = K(t, t̃),
�21 = �T

12, and �22 = K(t̃, t̃), where K(t, t̃) is a matrix
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E.g., Supernova photometric classification challenges, such as Kessler (2010).

Interpolate	with	
Gaussian	Process	

Iden4fy	features	
w/	Diffusion	Maps			

Classify	using		
Random	Forest		

	

Classifier:	
6

Gaussian process fit of LCs (four color bands, g, r , i , z)
Diffusion map, plus redshift and a measure of brightness,
to extract 102 covariates
Random forest: cross validation to select hyperparameter

6Revsbech, Trotta, and van Dyk (2018). STACCATO: A Novel Solution to Supernova Photometric
Classification with Biased Training Samples, 473, 3969-3986.

David A. van Dyk Bayesian Astrostatistics: Part III



Figs/uci

Model Building
Extended Modeling Examples

Hierarchical Model: Supernovae & Cosmology
Non-Representiative Data and StratLearn
Discussion

Outline

1 Model Building
Multi-Level Models
Example: Selection Effects
Hierarchical Models and Shrinkage

2 Extended Modeling Examples
Hierarchical Model: Supernovae & Cosmology
Non-Representiative Data and StratLearn
Discussion

David A. van Dyk Bayesian Astrostatistics: Part III



Figs/uci

Model Building
Extended Modeling Examples

Hierarchical Model: Supernovae & Cosmology
Non-Representiative Data and StratLearn
Discussion

Spectroscopic and Photometric Data
Spectroscopic Redshift

http://www.noao.edu/image_gallery/html/im0566.html

Can we Train a Classifier
Train on Spectroscopic
Target = Photometric

Photometric Redshift

https://inspirehep.net/record/1202215/plots

Integrated average in
each passband.
More readily available,
but far less informative.

David A. van Dyk Bayesian Astrostatistics: Part III



Figs/uci

Model Building
Extended Modeling Examples

Hierarchical Model: Supernovae & Cosmology
Non-Representiative Data and StratLearn
Discussion

Spectroscopic Training Set Not Representative

A General Challenge
Aim: use training set px , yq to predict target set (y from x).
Spectroscopic data more available for bright/near objects.
These object differ systematically from population.

[Image Credit: Izbicki, Lee, Freeman, 2017, AoAS]
David A. van Dyk Bayesian Astrostatistics: Part III



Figs/uci

Model Building
Extended Modeling Examples

Hierarchical Model: Supernovae & Cosmology
Non-Representiative Data and StratLearn
Discussion

Covariate Shift

We Assume Covariate Shift:

p trainingpy | xq “ p targetpy | xq but p trainingpxq ‰ p targetpxq

Supernovae classification:

0.0 0.4 0.8 1.2

1
2

3
4

redshift

br
ig

ht
ne

ss

*
*

** **

*

** *** *
*

*

*

***
*
*

* **

*

*
**

*

*

*
**
*

*

* *

*

*
*

*

*
*

*
*

*

*
* * *

*

*

* *
*

**
**

*
* *

*
*

*

*

*

**

*
*

*
*

*
*

* **
** * *

*

*

*
**

**
*

** *****
*

*
**
*

*

*
*

*

*
**

*

*

*
**

** *
** **

*
*

*

*

*

*

*

*
* * *

* *
*

*

*
*

*

**
**

*
*

* **

*
*

* *
*

*

*
*

*
*

** **
* *

* *

*
* *

* *
* **

*

*

*

**

*

*
*

*
***

*

*
* ** *

* *
**

*
** **

*

*

*

*
*

**
**

**
*

*

*

*
*

*
**

*

*
*

* *
*

*
*

** *

*
** * ** *

***
**

*

*

**
*

* *
** ** *

*
*

**
**

*
*
*

*
*

*

*
**

* *

*

*
*

**
*

*

* *

*

*

*
* *

*
* **** *

* *
*
*

**

*
*

**
*
* *

* *
*

*
*

*
* **

*

*
*

*

**
*

*

* *

*

* *
*

*
** ** *** *

*
*

*
** *

*

* **
*

*
*

*

*
* ***

*
*

*
*

*

* *

*
*

**
* **

*

*
*

***

*
**

*
*

* * *

*
*

***

*

**

*

*

*

*

*
*

*

*
*

**
*

*
**

**
*

**
* *

**
**
*
* **

*
**

*

*

***
**

**
*

** *

*

*
****

*
**

**
*

* *
*

*

* *

*

**
*

*
** * *

*

*
*

* *

*
*

*

*
**** ***

*
*

*

*
** *

*

**

* *

*
*

* * *
* * ****

*

*

* *

*
*

*
*

*

*
* ***
*

*
*

*

*

*

*

*

*
** * *

*
* ***

*

*

*
*

* ** *

*

** ** * ** *
*

* * *
*

*

*

*
*

*
*

**
* *

* ** * *

*
**

*
*

*
***

*
*

*

**
*

* *

*
*

*

*
**

*

* *

*
* *
*
*

*
** ** *

***
*

**

*

*
*

*

*

* **
*

*
*
**

*

**

*

***
**

* **
*

*
*

**

*

*
* **

*

**

*
*

**

*

*

** *

*

*
*

* *
*

*
**
*

*

*
*

* *

***
*

*

*

**
*

*

*
**

*
*

* **
*

*
*

*
*

***

*

* **
**

*
*

* ** **
*** ***

*

**

**

* *

*
*

**
*** *

*

*
* ** * **

*

*

*
*

*

**
*

**

*
*
*

*

* * *

*
*

*
**

*

*
* **

*
**

*

*
* *

**
*

*
* *

*

*

*
*

*

*

*
*
*

**

*
*

*
* *

**
*

*
*

*** ** *

*

**

*
* ** * **

*** **

*
*

*
* *

*
*

*
* **

* *
*

*

*
**

*
*

*

*
* * *

* *

*

*
**

*
*

*

****
**

*
*
*

*
*

**** **
*

*

*
*

* ** *
*

**
*

*

*
*

*

*
* *

*

*

**

*

*

* *
**

* *
**

* **

*

**

*
*

*
*

*
*

*
*

* *

****

*

**

* **

** *
*

*

*
*

*
*

*

*
* ****

*

*
*

**

*

* *

*
**

*
*

*
*

*
*

*
***

*
*

*

**
*

*

*
*

*

*

**
*

* *
**

*
*

***
*

* * **

*

*

* ** *
*

**
**

* *
*

*
*

* ** *
*

** *

*

* *
*

* *
** *

*
* **

*

* **
*

*

*
*

*

**

** **

*

**
**

*

* **
**

** * **

***
*

*
**

**
*

* *

*

* *
**

*
* **

*
*

**
**
* *

*

*
*

*
**
*

*
***

*

*
*

*
*

*
*

** *

** *

*

*

*

*

*
*

*

* *
*

* *
* ***

*
*

*

*

*

*
*

**

*
*

**
*

**
**

**

*
*

*
* *

*

**
*

*

*

*

*
*
*

****
*

*
*
*

*
*

*
*

*
* ***

*

*
*

*

*

*
*

*

**
* ** ** *

*
*

*

*

*
*

**

●

●

Training Set
SNIa
non−SNIa

● Test Set            

0.0 0.4 0.8 1.2

1
2

3
4

redshift

br
ig

ht
ne

ss

●

●

●

●

●

Grp. 1
Grp. 2
Grp. 3
Grp. 4
Grp. 5

Learning methods must be adapted to account for
non-representative training data.

David A. van Dyk Bayesian Astrostatistics: Part III



Figs/uci

Model Building
Extended Modeling Examples

Hierarchical Model: Supernovae & Cosmology
Non-Representiative Data and StratLearn
Discussion

Does a new drug improve health outcomes?

Causal Inference:
Split subjects: treatment (Z “ 1) and control (Z “ 0) group
What if treatment group differs systematically from control
group, e.g., in terms of x .

ptreatmentpxq ?“ pcontrolpxq
Randomiziation is the gold standard, not always possible.

Propensity Scores:
Rosenbaum and Rubin (1983) define propensity scores:

epxq “ PrpZ “ 1 | xq.
Demonstrate that epxq is a balancing score:

ptreatmentpx | epxqq “ pcontrolpx | epxqq.
... easy to diagnose in practice!
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Propensity for Selection to Training Set

Setup:
We wish to predict y from x in target set.
Use prediction function, f pxq, estimated in training set.
In this context we define the propensity score:

epxq “ Prptraining set | xq, with 0 † epxq † 1.

Result:
Because epxq is a balancing score, under covariate shift,

ptargetpx , y | epxqq “ ptrainpx , y | epxqq.

I.e, given epxq the joint test and target distributions are equal. It
follows, that for any loss function `pf pxq, yq,

Etargetr`pf pxq, yq | epxqs “ Etrainr`pf pxq, yq | epxqs.
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StratLearn: Improved Learning under Covariate Shift
Propensity scores

Estimate:
êpxq “ Prptarget set | covariatesq
Check: p trainpx | êpxqq “ p targetpx | êpxqq
Given epxq, expected loss of predictor,
f pxq, is same in target & training sets.

StratLearn
Stratify training & target sets on êpxq.
Classify data separately in each strata.

Reduce covariate shift and thus expected
classification/prediction error.

Reference: Autenrieth, van Dyk, Trotta, and Stenning (2023). Stratified Learning: A General-Purpose Statistical
Method for Improved Learning under Covariate Shift, SADM, 1-16.
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Results for Supernova Classification

ROC for StratLearn and several existing weighting methods.
“Biased” ignores Covariate Shift.
With an unbiased training set
AUC = 0.965.

Weighting Methods for Cov Shift

Etargetr`pf pxq, yqs “ Etrain

«
ptargetpxq
ptrainpxq

`pf pxq, yq
�

KLIEP (Sugiyama et al., 2008)

uLSIF (Kanamori et al.. 2009);

NN: Nearest-Neighbor (Kremer et al.. 2015);

IPS: probabilistic classification (Kanamori et
al.. 2009);

While effective in this particular case, GP data augmentation is generally not an option in most
covariate shift tasks. Building upon the approach by [66], we show that principled application of
StratLearn makes augmentation dispensable for binary classification of SNIa vs. non-SNIa, using a
random forest classifier as proposed in [66]. For comparison to previously published methods, the
predictive performance is measured by the target prediction AUC.

Data and preprocessing We use data from the updated “Supernova photometric classification
challenge” (SPCC) [44], containing a total of 21,318 simulated SNIa and of other types (Ib, Ic and
II). For each supernova (SN), LCs are given in four color bands, {6, A, 8, I}. The data is divided into a
source (training) set ⇡( of 1102 spectroscopically confirmed SNe with known types and 20,216 SNe
with unknown types (target set ⇡) ). 51% of the source objects are of type Ia, while only 23% are of
type Ia in the target data, a consequence of the strong covariate shift in the data.

We follow the approach in [66], which has been applied to an earlier release of the SPCC data [45]
(discussed in the Supplement), to extract a set of features from the LC data that can be used for
classification. First, a GP with a squared exponential kernel is used to model the LCs. Then, a
diffusion map [67] is applied, resulting in a vector of similarity measures between the LCs that can
be used as predictor variables. We thus obtain 102 predictive covariates, 100 covariates from the
diffusion map, plus redshift (defined in Section 4.4) and a measure of the objects’ brightness [66].
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Biased:          AUC = 0.902
uLSIF:           AUC = 0.902
NN:                AUC = 0.923
IPS:               AUC = 0.921
StratLearn:    AUC = 0.958

Figure 2: Comparison of ROC curves for
SNIa classification using the updated SPCC
data. Here, Biased and uLSIF are identical.

Results: First, we evaluate the impact of covariate
shift on classification by training a random forest clas-
sifier on the source covariates ignoring covariate shift,
resulting in an AUC of 0.902 on the target data (black
ROC curve in Figure 2). Next, we obtain a ‘gold
standard’ benchmark by randomly selecting 1,102
samples from the combined source and target data as
representative source set. Applying the same classi-
fication procedure on this unbiased ‘gold standard’
training data (unavailable in practice), we obtain an
AUC of 0.965 on the 20,216 test samples.

Given the biased source data, StratLearn is imple-
mented as described in Section 3, including all 102
covariates in the logistic propensity score estimation
model. The improved covariate balance within strata
is discussed and illustrated in the Supplement. After
stratification, a random forest classifier is trained and
optimized on source strata ⇡(1 and ⇡(2 separately
to predict samples in target strata ⇡)1 and ⇡)2 . We
used repeated 10-fold cross validation with a large
hyperparameter grid to minimize the empirical risk of (9) within each strata; details appear in the
Supplement. Source strata ⇡( 9 for 9 2 {3, 4, 5} have a small sample size, (13,7,4) respectively. Thus,
the source strata are merged with ⇡(2 to train the random forest to predict ⇡)9 for 9 2 {3, 4, 5}. With
StratLearn, we obtain an AUC of 0.958 on the target data (blue ROC curve in Figure 2), very near the
optimal ‘gold standard’ benchmark.

Figure 2 compares StratLearn to importance sampling methods designed to adjust for covariate shift
(Proposition 2). To perform importance sampling in this example, the bootstrapped samples in the
random forest fit were resampled with probabilities proportional to the estimated importance weights
(details provided in the Supplement). NN and IPS led to the best importance weighted classifier with
an AUC of 0.923 and 0.921, respectively – an improvement over the biased fit, but still substantially
lower than StratLearn. KLIEP failed to fit importance weights in this example and is thus not included
in the results. We also implemented importance weighted cross validation (IWCV) [80], using the
same hyperparameter grid as for StratLearn, and a combination of IWCV and importance sampling,
which both led to lower AUC than the ones reported in Figure 2 (numerical results are presented in
the Supplement).

Previous state-of-the-art approaches obtain an AUC of 0.855 [53] using boosted decision trees, 0.939
[61] using a combined framework of an autoencoder and a convolutional neural network and 0.94
[66], using LC augmentation and target data leakage, all lower than StratLearn.

7

Unfortunately, large weights are highly variable
and cause unreliable target predictions.
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Example: Photo-z Conditional Density Estimation

Objective:
Conditional density estimation f pz|xq of
redshift given photometric magnitudes.

Significant covariate shift in magnitudes.

Data (following Izbicki et al., 2017):
468k galaxies (Sheldon et al. 2012), spectro-
scopic redshift, 5 photometric magnitudes.
Create non-representative training set.
Add k P t10, 50u i.i.d. Gaussian covariates.

What is the effect of high-dimensional
irrelevant covariates?
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Example: Photo-z conditional density estimation

Generalized risk (Izbicki, et al., 2017):

R̂pf̂ q “ 1
ntarget

ntargetÿ

i“1

ª
f̂ 2pz|x piq

targetqdz´ 2
ntrain

ntrainÿ

i“1

f̂ pzpiq
train|x piq

trainqŵpx piq
trainq,

Conditional density estimation models:

hist-NN, ker-NN, Series
Comb (combination model):

f̂ ↵pz|xq “
pÿ

k“1

↵k f̂k pz|xq,
[where ↵i • 0 and

∞p
k“1 ↵k “ 1.]

StratLearn:

Minimize risk separately in each stratum (with wpxq ” 1).
Optimize ↵ separately for each strata (with wpxq ” 1).
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Photo-z: Stress Test:
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Target risk of photometric redshift estimates, using different
sets of predictors.

StratLearn is especially advantageous
with high dimensional covariates.
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Discussion

Estimation of groups of parameters describing populations
of sources not uncommon in astronomy.
These parameters may or may not be of primary interest.
Modeling the distribution of object-specific parameters can
dramatically reduce both error bars and MSE ...
... especially with noisy observations of similar objects.
Shrinkage estimators are able to “borrow strength”.

Don’t throw away half of your toolkit!!
(Bayesian and Frequency methods)
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